

Security Configuration Benchmark For

Version 3.0.0
May 18th, 2010

Apache HTTP Server 2.2

Copyright 2001-2010, The Center for Internet Security
http://cisecurity.org

feedback@cisecurity.org

2 | P a g e

Background.

CIS provides benchmarks, scoring tools, software, data, information, suggestions, ideas, and other services and
materials from the CIS website or elsewhere (“Products”) as a public service to Internet users worldwide.
Recommendations contained in the Products (“Recommendations”) result from a consensus-building process that
involves many security experts and are generally generic in nature. The Recommendations are intended to provide
helpful information to organizations attempting to evaluate or improve the security of their networks, systems and
devices. Proper use of the Recommendations requires careful analysis and adaptation to specific user requirements.
The Recommendations are not in any way intended to be a “quick fix” for anyone’s information security needs.

No representations, warranties and covenants.

CIS makes no representations, warranties or covenants whatsoever as to (i) the positive or negative effect of the
Products or the Recommendations on the operation or the security of any particular network, computer system,
network device, software, hardware, or any component of any of the foregoing or (ii) the accuracy, reliability,
timeliness or completeness of any Product or Recommendation. CIS is providing the Products and the
Recommendations “as is” and “as available” without representations, warranties or covenants of any kind.

User agreements.

By using the Products and/or the Recommendations, I and/or my organization (“we”) agree and acknowledge that:

No network, system, device, hardware, software or component can be made fully secure;
We are using the Products and the Recommendations solely at our own risk;

We are not compensating CIS to assume any liabilities associated with our use of the Products or the
Recommendations, even risks that result from CIS’s negligence or failure to perform;

We have the sole responsibility to evaluate the risks and benefits of the Products and Recommendations to us and
to adapt the Products and the Recommendations to our particular circumstances and requirements;

Neither CIS, nor any CIS Party (defined below) has any responsibility to make any corrections, updates, upgrades or
bug fixes or to notify us if it chooses at it sole option to do so; and

Neither CIS nor any CIS Party has or will have any liability to us whatsoever (whether based in contract, tort, strict
liability or otherwise) for any direct, indirect, incidental, consequential, or special damages (including without
limitation loss of profits, loss of sales, loss of or damage to reputation, loss of customers, loss of software, data,
information or emails, loss of privacy, loss of use of any computer or other equipment, business interruption,
wasted management or other staff resources or claims of any kind against us from third parties) arising out of or in
any way connected with our use of or our inability to use any of the Products or Recommendations (even if CIS has
been advised of the possibility of such damages), including without limitation any liability associated with
infringement of intellectual property, defects, bugs, errors, omissions, viruses, worms, backdoors, Trojan horses or
other harmful items.

Grant of limited rights.

CIS hereby grants each user the following rights, but only so long as the user complies with all of the terms of these
Agreed Terms of Use:

Except to the extent that we may have received additional authorization pursuant to a written agreement with CIS,
each user may download, install and use each of the Products on a single computer;

Each user may print one or more copies of any Product or any component of a Product that is in a .txt, .pdf, .doc,
.mcw, or .rtf format, provided that all such copies are printed in full and are kept intact, including without limitation
the text of this Agreed Terms of Use in its entirety.

3 | P a g e

Retention of intellectual property rights; limitations on distribution.

The Products are protected by copyright and other intellectual property laws and by international treaties. We
acknowledge and agree that we are not acquiring title to any intellectual property rights in the Products and that
full title and all ownership rights to the Products will remain the exclusive property of CIS or CIS Parties. CIS
reserves all rights not expressly granted to users in the preceding section entitled “Grant of limited rights.” Subject
to the paragraph entitled “Special Rules” (which includes a waiver, granted to some classes of CIS Members, of
certain limitations in this paragraph), and except as we may have otherwise agreed in a written agreement with CIS,
we agree that we will not (i) decompile, disassemble, reverse engineer, or otherwise attempt to derive the source
code for any software Product that is not already in the form of source code; (ii) distribute, redistribute, encumber,
sell, rent, lease, lend, sublicense, or otherwise transfer or exploit rights to any Product or any component of a
Product; (iii) post any Product or any component of a Product on any website, bulletin board, ftp server,
newsgroup, or other similar mechanism or device, without regard to whether such mechanism or device is internal
or external, (iv) remove or alter trademark, logo, copyright or other proprietary notices, legends, symbols or labels
in any Product or any component of a Product; (v) remove these Agreed Terms of Use from, or alter these Agreed
Terms of Use as they appear in, any Product or any component of a Product; (vi) use any Product or any component
of a Product with any derivative works based directly on a Product or any component of a Product; (vii) use any
Product or any component of a Product with other products or applications that are directly and specifically
dependent on such Product or any component for any part of their functionality, or (viii) represent or claim a
particular level of compliance with a CIS Benchmark, scoring tool or other Product. We will not facilitate or
otherwise aid other individuals or entities in any of the activities listed in this paragraph.

We hereby agree to indemnify, defend and hold CIS and all of its officers, directors, members, contributors,
employees, authors, developers, agents, affiliates, licensors, information and service providers, software suppliers,
hardware suppliers, and all other persons who aided CIS in the creation, development or maintenance of the
Products or Recommendations (“CIS Parties”) harmless from and against any and all liability, losses, costs and
expenses (including attorneys' fees and court costs) incurred by CIS or any CIS Party in connection with any claim
arising out of any violation by us of the preceding paragraph, including without limitation CIS’s right, at our
expense, to assume the exclusive defense and control of any matter subject to this indemnification, and in such case,
we agree to cooperate with CIS in its defense of such claim. We further agree that all CIS Parties are third-party
beneficiaries of our undertakings in these Agreed Terms of Use.

Special rules.

CIS has created and will from time to time create special rules for its members and for other persons and
organizations with which CIS has a written contractual relationship. Those special rules will override and supersede
these Agreed Terms of Use with respect to the users who are covered by the special rules. CIS hereby grants each
CIS Security Consulting or Software Vendor Member and each CIS Organizational User Member, but only so long as
such Member remains in good standing with CIS and complies with all of the terms of these Agreed Terms of Use,
the right to distribute the Products and Recommendations within such Member’s own organization, whether by
manual or electronic means. Each such Member acknowledges and agrees that the foregoing grant is subject to the
terms of such Member’s membership arrangement with CIS and may, therefore, be modified or terminated by CIS at
any time.

Choice of law; jurisdiction; venue.

We acknowledge and agree that these Agreed Terms of Use will be governed by and construed in accordance with
the laws of the State of Maryland, that any action at law or in equity arising out of or relating to these Agreed Terms
of Use shall be filed only in the courts located in the State of Maryland, that we hereby consent and submit to the
personal jurisdiction of such courts for the purposes of litigating any such action. If any of these Agreed Terms of
Use shall be determined to be unlawful, void, or for any reason unenforceable, then such terms shall be deemed
severable and shall not affect the validity and enforceability of any remaining provisions. We acknowledge and
agree that we have read these Agreed Terms of Use in their entirety, understand them and agree to be bound by
them in all respects.

Table of Contents
Table of Contents .. 4

Overview .. 6

Consensus Guidance .. 6

Intended Audience ... 6

Acknowledgements ... 7

Typographic Conventions ... 8

Configuration Levels ... 8

Level-I Benchmark settings/actions .. 8

Level-II Benchmark settings/actions... 8

Scoring Status .. 8

Scorable ... 8

Not Scorable .. 8

1. Recommendations .. 9

1.1 Planning and Installation .. 9

1.1.1 Pre-installation Planning Checklist (Level 1, Not Scorable) 9

1.1.2 Do not Install on a Multi-use System (Level 2, Not Scorable) 9

1.1.3 Installing Apache (Level 1, Not Scorable) .. 10

1.2 Minimize Apache Modules .. 11

1.2.1 Enable only necessary Authentication and Authorization Modules (Level 1,
Scorable) .. 11

1.2.2 Enable the Log Config Module (Level 1, Scorable).. 13

1.2.3 Disable WebDAV modules (Level 1, Scorable) ... 13

1.2.4 Disable Status and Info modules (Level 1, Scorable) ... 14

1.2.5 Disable Autoindex module (Level 1, Scorable) .. 15

1.2.6 Disable Proxy Modules (Level 1, Scorable).. 16

1.2.7 Disable User Directories Modules (Level 1, Scorable) .. 17

1.3 Restricting OS Privileges .. 18

1.3.1 Run the Apache Web Server as a non-root user (Level 1, Scorable) 19

1.3.2 Give the Apache User Account an Invalid Shell (Level 1, Scorable) 20

1.3.3 Lock the Apache User Account (Level 1, Scorable)... 20

1.3.4 Apache Directory and File Ownership (Level 1, Scorable) 21

1.3.5 Apache Directory and File Permissions (Level 1, Scorable) 22

1.3.6 Core Dump Directory Security (Level 1, Scorable) ... 22

1.3.7 Lock File Security (Level 1, Scorable) .. 24

1.3.8 Pid File Security (Level 1, Scorable) ... 24

1.3.9 ScoreBoard File Security (Level 1, Scorable) .. 25

1.4 Apache Access Control.. 26

1.4.1 Deny Access to OS Root Directory (Level 1, Scorable) .. 26

1.4.2 Allow Appropriate Access to Web Content (Level 1, Not Scorable) 28

1.4.3 Restrict OverRide for the OS Root Directory (Level 1, Scorable) 29

1.4.4 Restrict OverRide for All Directories (Level 1, Scorable) ... 31

1.5 Minimize Features, Content and Options .. 32

1.5.1 Restrict Options for the OS Root Directory (Level 1, Scorable) 32

1.5.2 Restrict Options for the Web Root Directory (Level 1, Scorable) 33

5 | P a g e

1.5.3 Minimize Options for Other Directories (Level 1, Scorable) 34

1.5.4 Remove Default HTML Content (Level 1, Scorable) ... 36

1.5.5 Remove Default CGI Content (Level 1, Scorable) .. 38

1.5.6 Limit HTTP Request Methods (Level 1, Scorable) .. 39

1.5.7 Disable HTTP TRACE Method (Level 1, Scorable) .. 41

1.5.8 Restrict HTTP Protocol Versions (Level 1, Scorable) .. 42

1.5.9 Restrict Access to .ht* files (Level 1, Scorable) .. 43

1.5.10 Restrict File Extensions (Level 2, Scorable) .. 44

1.6 Operations - Logging, Monitoring and Maintenance ... 46

1.6.1 Configure the Error Log (Level 1, Scorable) .. 46

1.6.2 Configure the Access Log (Level 1, Scorable) ... 47

1.6.3 Log Monitoring (Level 1, Scorable) ... 48

1.6.4 Log Storage and Rotation (Level 1, Scorable) ... 50

1.6.5 Monitor Vulnerability Lists (Level 1, Not Scorable) ... 52

1.6.6 Apply Applicable Patches (Level 1, Scorable) ... 53

1.7 Use SSL / TLS.. 55

1.7.1 Install mod_ssl and/or mod_nss (Level 1, Scorable) .. 55

1.7.2 Install a valid trusted certificate (Level 1, Scorable) ... 56

1.7.3 Protect the Servers Private Key (Level 1, Scorable) ... 60

1.7.4 Restrict weak SSL Protocols and Ciphers (Level 1, Scorable) 61

1.7.5 Restrict Insecure SSL Renegotiation (Level 1, Scorable).. 62

1.8 Information Leakage ... 63

1.8.1 Limit Information in the Server Token (Level 1, Scorable) 63

1.8.2 Limit Information in the Server Signature (Level 1, Scorable) 64

1.8.3 Information Leakage via Default Apache Content (Level 2, Scorable) 65

1.9 Miscellaneous Configuration Settings .. 66

1.9.1 Denial of Service Mitigation (Level 1, Scorable) .. 66

1.9.2 Buffer Overflow Mitigation (Level 2, Scorable) ... 68

1.9.3 Restrict Listen Directive (Level 2, Scorable) ... 70

Appendix A: References ... 72

Appendix B: Further Reading .. 73

Appendix C: DISA Web SRR Checklist Mapping ... 74

Appendix D: Change History .. 76

6 | P a g e

Overview
This document, Security Configuration Benchmark for Apache HTTP Server 2.2, provides
prescriptive guidance for establishing a secure configuration posture for the Apache HTTP
Server versions 2.2.x running on Linux. This guide was tested against Apache Web Server
2.2.14 as built from source httpd-2.2.14.tar.gz from http://httpd.apache.org/ on Red
Hat Enterprise Linux Server release 5.4. To obtain the latest version of this guide, please
visit http://cisecurity.org. If you have questions, comments, or have identified ways to
improve this guide, please write us at feedback@cisecurity.org.

Consensus Guidance
This guide was created using a consensus review process comprised of volunteer and
contract subject matter experts. Consensus participants provide perspective from a diverse
set of backgrounds including consulting, software development, audit and compliance,
security research, operations, government, and legal.

Each CIS benchmark undergoes two phases of consensus review. The first phase occurs
during initial benchmark development. During this phase, subject matter experts convene
to discuss, create, and test working drafts of the benchmark. This discussion occurs until
consensus has been reached on benchmark recommendations. The second phase begins
after the benchmark has been released to the public Internet. During this phase, all
feedback provided by the Internet community is reviewed by the consensus team for
incorporation in the CIS benchmark. If you are interested in participating in the consensus
review process, please send us a note to feedback@cisecurity.org.

Intended Audience
This document is intended for system and application administrators, security specialists,
auditors, help desk, and platform deployment personnel, who plan to develop, deploy,
assess, or secure solutions that incorporate Apache Web Server on a Linux platform.

http://httpd.apache.org/
http://cisecurity.org/
mailto:feedback@cisecurity.org
mailto:feedback@cisecurity.org

7 | P a g e

Acknowledgements
This benchmark exemplifies the great things a community of users, vendors, and subject
matter experts can accomplish through consensus collaboration. The CIS community
thanks the entire consensus team with special recognition to the following individuals who
contributed greatly to the creation of this guide:

Author:
Ralph Durkee, CISSP, GSEC, GCIH, GSNA, GPEN

Maintainers:
Ralph Durkee, CISSP, GSEC, GCIH, GSNA, GPEN
Christian Folini, PhD, netnea.com

Contributors and Reviewers:

 Ahmed Adel, GSEC, GCIH, GCFW, GWAN
 Ryan Barnett
 Thomas Bullinger
 Lawrence Grim
 Blake Frantz, Center for Internet Security
 Nick Hindley
 Jeff Leggett, CISSP
 Hao Li
 Peter Morin, CISA, CGEIT, GCFA
 Mihai Nitulescu
 Eduardo Petazze
 Christopher Sierra
 Vinoth Sivasubramanian, Project Manager IT UAE Exchange Center
 Art Stricek
 Eric Taylor
 Sven Vermeulen
 Vytautas Vysniauskas, PhD.

Additionally, the CIS community extends thanks to the following individuals for their
contributions to the 2.x.x and 1.x.x versions of this benchmark:

John Banghart , Ryan Barnett, Kevin Binsfield, Glenn Brunette, Chris Calabrese, Ralf Durkee,
Brian Eppinger, Christian Folini, Blake Frantz, Jeremiah Grossman, Jim Jagielski, George
Jones, David A. Kennel, Hal Pomeranz, Ivan Ristic, Jack Simons , and Art Stricek.

8 | P a g e

Typographic Conventions
The following typographical conventions are used throughout this guide:

Convention Meaning
Stylized Monospace font Used for blocks of code, command, and script examples.

Text should be interpreted exactly as presented.
Monospace font Used for inline code, commands, or examples. Text should

be interpreted exactly as presented.

<italic font in brackets> Italic texts set in angle brackets denote a variable
requiring substitution for a real value.

Italic font Used to denote the title of a book, article, or other
publication.

Note Additional information or caveats

Configuration Levels
This section defines the configuration levels that are associated with each benchmark
recommendation. Configuration levels represent increasing levels of security assurance.

Level-I Benchmark settings/actions

Level-I Benchmark recommendations are intended to:
 be practical and prudent;
 provide a clear security benefit; and
 do not negatively inhibit the utility of the technology beyond acceptable means

Level-II Benchmark settings/actions
Level-II Benchmark recommendations exhibit one or more of the following characteristics:

 are intended for environments or use cases where security is paramount
 acts as defense in depth measure
 may negatively inhibit the utility or performance of the technology

Scoring Status
This section defines the scoring statuses used within this document. The scoring status
indicates whether compliance with the given recommendation is discernable in an
automated manner.

Scorable

The platform’s compliance with the given recommendation can be determined via
automated means.

Not Scorable
The platform’s compliance with the given recommendation cannot be determined via
automated means.

9 | P a g e

1. Recommendations

1.1 Planning and Installation
Recommendations for the planning and installation of an Apache Web Server

1.1.1 Pre-installation Planning Checklist (Level 1, Not Scorable)

Review and implement the following items as appropriate:

 Reviewed and implemented my company's security policies as they relate to web

security.
 Implemented a secure network infrastructure by controlling access to/from your

web server by using firewalls, routers and switches.
 Harden the Underlying Operating System of the web server, by minimizing listening

network services, applying proper patches and hardening the configurations as
recommended in the appropriate Center for Internet Security benchmark for the
platform.

 Implement central log monitoring processes.
 Implemented a disk space monitoring process and log rotation mechanism.
 Educated developers about developing secure applications.

http://www.owasp.org/ http://www.webappsec.org/
 Ensure the WHOIS Domain information registered for our web presence does not

reveal sensitive personnel information, which may be leveraged for Social
Engineering (Individual POC Names), War Dialing (Phone Numbers) and Brute
Force Attacks (Email addresses matching actual system usernames).

 Ensure your Domain Name Service (DNS) servers have been properly secured to
prevent attacks, as recommended in the CIS BIND DNS benchmark.

 Implemented a Network Intrusion Detection System to monitor attacks against the
web server.

1.1.2 Do not Install on a Multi-use System (Level 2, Not Scorable)

Description:
Default server configurations often expose a wide variety of services unnecessarily
increasing the risk to the system. Just because a server can perform many services doesn’t
mean it is wise to do so. The number of services and daemons executing on the Apache
Web server should be limited to those necessary, with the Web server being the only
primary function of the server.

Rationale:
Maintaining a server for a single purpose increases the security of your application and
system. The more services which are exposed to an attacker, the more potential vectors an
attacker has to exploit the system and therefore the higher the risk for the server. A Web
server should function as only a web server and if possible should not be mixed with other
primary functions such as mail, DNS, database or middleware.

Remediation:

http://www.owasp.org/
http://www.webappsec.org/

10 | P a g e

Leverage the package or services manager for your OS to uninstall or disable unneeded
services. On Red Hat systems, the following will disable a given service:

chkconfig <servicename> off

Audit:
Leverage the package or services manager for your OS to list enabled services and review
with document business needs of the server. On Red Hat systems, the following will
produce the list of current services enabled:

chkconfig --list | grep ':on'

Default Value:
Depends on OS Platform

1.1.3 Installing Apache (Level 1, Not Scorable)

Description:

The CIS Apache Benchmark recommends using the Apache binary provided by your vendor
for most situations in order to reduce the effort and increase the effectiveness of
maintenance and security patches. However to keep the benchmark as generic and
applicable to all Unix/Linux platforms as possible, a default source build has been used for
this benchmark.

Important Note: There is a major difference between source builds and most vendor
packages that is very important to highlight. The default source build of Apache is fairly
conservative and minimalist in the modules included and is therefore starts off in a fairly
strong security state, while most vendor binaries are typically very well loaded with most
of the functionality that one may be looking for. Therefore it is important that you don’t
assume the default value shown in the benchmark will match default values in your
installation.

You should always test any new installation in your environment before putting it into
production. Also keep in mind you can install and run a new version alongside the old one
by using a different Apache prefix and a different IP address or port number in the Listen
directive.

Rationale:

The benefits of using the vendor supplied binaries include:

 Ease of installation as it will just work, straight out of the box.

 It is customized for your OS environment.

 It will be tested and have gone though QA procedures.

11 | P a g e

 Everything you need is likely to be included, probably including some third party
modules. Many OS vendors ship Apache with mod_ssl and OpenSSL and PHP,
mod_perl and mod_security for example.

 Your vendor will tell you about security issues so you have to look in fewer places.

 Updates to fix security issues will be easy to apply. The vendor will have already
verified the problem, checked the signature on the Apache download, worked out
the impact and so on.

 You may be able to get the updates automatically, reducing the window of risk.

Remediation:
Installation depends on the operating system platform. For a source build consult the
Apache 2.2 documentation on compiling and installing
http://httpd.apache.org/docs/2.2/install.html for a Red Hat Enterprise Linux 5 the
following yum command could be used.

yum install httpd

Audit:
Not Applicable

Default Value:
Not Applicable

References:

1. Apache Compiling and Installation http://httpd.apache.org/docs/2.2/install.html

1.2 Minimize Apache Modules

1.2.1 Enable only necessary Authentication and Authorization Modules (Level 1,
Scorable)

Description:
The Apache 2.2 modules for authentication and authorization have been refactored to
provide finer granularity, more consistent and logical names and to simplify configuration.
The authn_* modules provide authentication, while the authz_* modules provide
authorization. Apache provides 2 types of authentication basic and digest. Review Apache
AAA how-to documentation http://httpd.apache.org/docs/2.2/howto/auth.html and
enable only the modules that are required.

Rationale:
Authentication and authorization are your front doors to the protected information in your
web site. Most installations only need a small subset of the modules available. By
minimizing the enabled modules to only those that are required, we reduce the number of

http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/howto/auth.html

12 | P a g e

“doors” and have therefore reduced the attack surface of the web site. Likewise having
fewer modules means less software that could have vulnerabilities.

Remediation:
Consult Apache module documentation for descriptions of each module in order to
determine the necessary modules for the specific installation.
http://httpd.apache.org/docs/2.2/mod/ The unnecessary static compiled modules are
disabled through compile time configuration options as documented in
http://httpd.apache.org/docs/2.2/programs/configure.html. The dynamically loaded
modules are disabled by commenting out or removing the LoadModule directive from the
Apache configuration files (typically httpd.conf). Some modules may be separate packages,
and may be removed

Audit:

1. Use the httpd –M option as root to check which auth* modules are loaded.

httpd -M | egrep 'auth._'

2. Also use the httpd –M option as root to check for any LDAP modules which don’t
follow the same naming convention.

httpd -M | egrep 'ldap'

The above commands should generate a “Syntax OK’ message to stderr, in addition to a list
modules installed to stdout. If the “Syntax OK” message is missing then there was most
likely an error in parsing the configuration files.

Default Value:
The following are the modules statically loaded for a default source build:

authn_file_module (static)

authn_default_module (static)

authz_host_module (static)

authz_groupfile_module (static)

authz_user_module (static)

authz_default_module (static)

auth_basic_module (static)

References:

1. Apache AAA how-to http://httpd.apache.org/docs/2.2/howto/auth.html

2. Apache Module Documentation http://httpd.apache.org/docs/2.2/mod/

3. Apache Source Configuration
http://httpd.apache.org/docs/2.2/programs/configure.html

http://httpd.apache.org/docs/2.2/mod/
http://httpd.apache.org/docs/2.2/programs/configure.html
http://httpd.apache.org/docs/2.2/howto/auth.html
http://httpd.apache.org/docs/2.2/mod/
http://httpd.apache.org/docs/2.2/programs/configure.html

13 | P a g e

1.2.2 Enable the Log Config Module (Level 1, Scorable)

Description:

The log_config module provides for flexible logging of client requests, and provides for
the configuration of the information in each log.

Rationale:
Logging is critical for monitoring usage and potential abuse of your web server. To
configure the web server logging using the log_format directive this module is required.

Remediation:
Perform either one of the following:

a) For source builds with static modules run the Apache ./configure script without
including the --disable-log-config script options.

$ cd $DOWNLOAD/httpd-2.2.14

$./configure

b) For dynamically loaded modules, add or modify the LoadModule directive so that it
is present in the apache configuration as below and not commented out :

LoadModule log_config_module modules/mod_log_config.so

Audit:
Perform the following to determine if the log_config has been loaded:

1. Use the httpd –M option as root to check the module is loaded.

httpd -M | grep log_config

Note: If the module is correctly enabled, the output will include the module name
and whether it is loaded statically or as a shared module.

Default Value:
The module is loaded by default.

References:

1. Mod Log Config http://httpd.apache.org/docs/2.2/mod/mod_log_config.html

1.2.3 Disable WebDAV modules (Level 1, Scorable)

Description:
The Apache mod_dav and mod_dav_fs modules support WebDAV ('Web-based Distributed
Authoring and Versioning') functionality for Apache. WebDAV is an extension to the HTTP
protocol which allows clients to create, move, and delete files and resources on the web
server.

http://httpd.apache.org/docs/2.2/mod/mod_log_config.html

14 | P a g e

Rationale:
WebDAV is not widely used, and has serious security concerns as it may allow clients to
modify unauthorized files on the web server. Therefore, the WebDav modules mod_dav and
mod_dav_fs should be disabled.

Remediation:
Perform either one of the following to disable WebDAV module:

a) For source builds with static modules run the Apache ./configure script without
including the mod_dav, and mod_dav_fs in the --enable-modules= configure
script options.

$ cd $DOWNLOAD/httpd-2.2.14

$./configure

b) For dynamically loaded modules, comment out or remove the LoadModule directive
for the mod_dav and mod_dav_fs modules in the httpd.conf file.

##LoadModule dav_module modules/mod_dav.so

##LoadModule dav_fs_module modules/mod_dav_fs.so

Audit:
Perform the following to determine if the WebDAV modules are enabled.

1. Run the httpd server with the –M option to list enabled modules:

httpd -M | grep ' dav_[[:print:]]+module'

Note: If the WebDav modules are correctly disabled, the only output should be
“Syntax OK” when executing the above command.

Default Value:
The WebDav modules are not enabled with a default source build.

References:

1. http://httpd.apache.org/docs/2.2/mod/mod_dav.html

1.2.4 Disable Status and Info modules (Level 1, Scorable)

Description:

The Apache mod_info module provides information on the server configuration via access
to a /server-info URL location, while the mod_status module provides current server
performance statistics.

Rationale:
While having server configuration and status information available as a web page may be
convenient, it’s recommended that these modules NOT be enabled:

http://httpd.apache.org/docs/2.2/mod/mod_dav.html

15 | P a g e

 Once mod_info is loaded into the server, its handler capability is

available in per-directory .htaccess files and can leak sensitive
information from the configuration directives of other Apache modules such
as system paths, usernames/passwords, database names, etc.

 If mod_status is loaded into the server, its handler capability is available in all
configuration files, including per-directory files (e.g., .htaccess) and may have
security-related ramifications.

Remediation:
Perform either one of the following to disable the mod_info and mod_status modules:

a) For source builds with static modules run the Apache ./configure script without
including the mod_info, and mod_status in the --enable-modules= configure
script options.

$ cd $DOWNLOAD/httpd-2.2.14

$./configure

b) For dynamically loaded modules comment out or remove the LoadModule directive
for mod_info, and mod_status modules the from the httpd.conf file.

##LoadModule info_module modules/mod_info.so

##LoadModule status_module modules/mod_status.so

Audit:
Perform the following to determine if the WebDAV modules are enabled.

1. Run the httpd server with the –M option to list enabled modules:

/usr/sbin/httpd -M | egrep 'info_module|status_module'

Note: If the modules are correctly disabled, the only output should be “Syntax OK”
when executing the above command.

Default Value:
The mod_info and mod_status modules are not enabled with a default source build.

References:

1. http://httpd.apache.org/docs/2.2/mod/mod_info.html

2. http://httpd.apache.org/docs/2.2/mod/mod_status.html

1.2.5 Disable Autoindex module (Level 1, Scorable)

Description:
The Apache autoindex module automatically generates a web page that lists the contents
of the requested directory.

http://httpd.apache.org/docs/2.2/mod/mod_info.html
http://httpd.apache.org/docs/2.2/mod/mod_status.html

16 | P a g e

Rationale:
Automated directory listings should not be enabled as it will reveal information helpful to
an attacker such as naming conventions and directory paths. It may also reveal files that
were not intended to be revealed.

Remediation:
Perform either one of the following to disable the mod_autoindex module:

a) For source builds with static modules run the Apache ./configure script without
including the mod_autoindex in the --enable-modules= configure script options.

$ cd $DOWNLOAD/httpd-2.2.14

$./configure

b) For dynamically loaded modules comment out or remove the LoadModule directive
for mod_autoindex module the from the httpd.conf file.

LoadModule autoindex_module modules/mod_autoindex.so

Audit:
Perform the following to determine if the module is enabled.

1. Run the httpd server with the –M option to list enabled modules:

/usr/sbin/httpd -M | grep autoindex_module

Note: If the module is correctly disabled, the only output should be “Syntax OK”
when executing the above command.

Default Value:
The mod_autoindex module IS enabled with a default source build.

References:

1. AutoIndex http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

1.2.6 Disable Proxy Modules (Level 1, Scorable)

Description:

The Apache proxy modules allow the server to act as a proxy (either forward or reverse
proxy) of http and other protocols with additional proxy modules loaded. If the Apache
installation is not intended to proxy requests to or from another network then the proxy
module should not be loaded.

Rationale:
Proxy servers can act as an important security control when properly configured, however
a secure proxy server is not within the scope of this benchmark. A web server should be
primarily a web server or a proxy server but not both, for the same reasons that other

http://httpd.apache.org/docs/2.2/mod/mod_autoindex.html

17 | P a g e

multi-use servers are not recommended. Scanning for web servers that will also proxy
requests is a very common attack, as proxy servers are useful for anonymizing attacks on
other servers, or possibly proxying requests into an otherwise protected network.

Remediation:
Perform either one of the following to disable the proxy module:

a) For source builds with static modules run the Apache ./configure script without
including the mod_proxy in the --enable-modules= configure script options.

$ cd $DOWNLOAD/httpd-2.2.14

$./configure

b) For dynamically loaded modules comment out or remove the LoadModule directive
for mod_proxy module and all other proxy modules the from the httpd.conf file.

##LoadModule proxy_module modules/mod_proxy.so

##LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

##LoadModule proxy_ftp_module modules/mod_proxy_ftp.so

##LoadModule proxy_http_module modules/mod_proxy_http.so

##LoadModule proxy_connect_module modules/mod_proxy_connect.so

##LoadModule proxy_connect_module modules/mod_proxy_ajp.so

Audit:
Perform the following to determine if the modules are enabled.

1. Run the httpd server with the –M option to list enabled modules:

httpd -M | grep proxy_

Note: If the modules are correctly disabled, the only output should be “Syntax OK”
when executing the above command.

Default Value:
The mod_proxy module and other proxy modules are NOT enabled with a default source
build.

References:

1. Mod_Proxy http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

1.2.7 Disable User Directories Modules (Level 1, Scorable)

Description:
The UserDir directive must be disabled so that user home directories are not accessed via
the web site with a tilde (~) preceding the username. The directive also sets the path name
of the directory that will be accessed. For example:

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

18 | P a g e

 http://example.com/~ralph/ might access a public_html sub-directory of ralph
user’s home directory.

 The directive UserDir ./ might map /~root to the root directory /, which of course
is undesirable.

Rationale:
The user directories should not be globally enabled since it allows anonymous access to
anything users may want to share with other users on the network. Also consider that
every time a new account is created on the system, there is potentially new content
available via the web site.

Remediation:
Perform either one of the following to disable the proxy module:

1. For source builds with static modules run the Apache ./configure script with the
--disable-userdir configure script options.

$ cd $DOWNLOAD/httpd-2.2.14

$./configure --disable-userdir

2. For dynamically loaded modules, comment out or remove the LoadModule directive
for the mod_userdir module in the httpd.conf file.

##LoadModule userdir_module modules/mod_userdir.so

Audit:
Perform the following to determine if the modules are enabled.

1. Run the httpd server with the –M option to list enabled modules:

httpd -M | grep userdir_

Note: If the modules are correctly disabled, the only output should be “Syntax OK”
when executing the above command.

Default Value:
The mod_userdir modules are enabled with a default source build.

References:

1. Mod_UserDir http://httpd.apache.org/docs/2.2/mod/mod_userdir.html

1.3 Restricting OS Privileges
Security at the operating system (OS) level is the vital foundation required for a secure web
server. This section will focus on OS platform permissions and privileges.

http://example.com/~ralph/
http://httpd.apache.org/docs/2.2/mod/mod_userdir.html

19 | P a g e

1.3.1 Run the Apache Web Server as a non-root user (Level 1, Scorable)

Description:

Although Apache typically is started with root privileges in order to listen on port 80 and
443, it can and should run as another non-root user in order to perform the web services.
The Apache User and Group directives are used to designate the user and group to be used

Rationale:
One of the best ways to reduce your exposure to attack when running a web server is to
create a unique, unprivileged userid and group for the web daemon to execute as. The
“nobody” or “daemon” userid & group that come default on Unix variants should NOT be
used to run the web server as these principals are commonly used by other daemon
services. Instead, create a user and group that are exclusively used by the web service so as
to not give unnecessary access to other services. Also, the userid used for the apache user
should be a unique value between 1 and 499 as these lower values are reserved for the
special system accounts.

A more secure alternative is to bind Apache web service to an unprivileged port so it is not
necessary to start Apache as root.

Remediation:
Perform the following:

1. If the Apache user and group do not already exist, create the account and group as a
unique system account:

groupadd –r apache

useradd apache -r -g apache -d /var/www -s /sbin/nologin

2. Configure the Apache user and group in the Apache configuration file httpd.conf:

User apache

Group apache

Audit:
Ensure the apache account is unique and has been created with a UID between1-499 with
the apache group and configured in the httpd.conf file.

1. Ensure the previous lines are present in the Apache configuration and not
commented out:

grep -i '^User' $APACHE_PREFIX/conf/httpd.conf

grep -i '^Group' $APACHE_PREFIX/conf/httpd.conf

2. Ensure the apache account is correct:

id apache

20 | P a g e

The UID must be between 1-499, and group of apache similar to the following
entries:

uid=48(apache) gid=48(apache) groups=48(apache)

Default Value:
The default Apache User and Group is configured as ‘daemon’:

1.3.2 Give the Apache User Account an Invalid Shell (Level 1, Scorable)

Description:
The apache account must not be used as a regular login account, and should be assigned an
invalid or nologin shell to ensure that the account cannot be used to login.

Rationale:
Service accounts such as the apache account represent a risk if they can be used to get a
login shell to the system.

Remediation:

Change the apache account to use the nologin shell or an invalid shell such as
/dev/null:

chsh -s /sbin/nologin apache

Audit:

Check the apache login shell in the /etc/password file:

grep apache /etc/passwd

The apache account shell must be /sbin/nologin or /dev/null similar to the
following:

/etc/passwd:apache:x:48:48:Apache:/var/www:/sbin/nologin

Default Value:
The default Apache user account is daemon with a shell of /dev/null

1.3.3 Lock the Apache User Account (Level 1, Scorable)

Description:

The user account under which Apache runs, should not have a valid password, but should
be locked.

Rationale:
As a defense-in-depth measure the Apache user account should be locked to prevent logins,
and to prevent a user from su-ing to apache using the password. In general, there shouldn’t

21 | P a g e

be a need for anyone to su as apache. If a need does exist, sudo should be used instead,
which would not require the apache account password.

Remediation:
Use the passwd command to lock the apache account:

passwd -l apache

Audit:
Ensure the apache account is locked using the following:

passwd -s apache

The results will be similar to the following:

apache LK 2010-01-28 0 99999 7 -1 (Password locked.)

Default Value:
The default user is daemon and is locked.

1.3.4 Apache Directory and File Ownership (Level 1, Scorable)

Description:
The Apache directories and files should be owned by root with the root (or root equivalent)
group. This applies to all of the Apache software directories and files installed. The only
expected exception is that the Apache web document root ($APACHE_PREFIX/htdocs) are
likely to need a designated group to allow web content to be updated (such as webupdate)
through a change management process.

Rationale:
Setting the appropriate ownership and group on the Apache files and directories can help
to prevent/mitigate exploitation severity and information disclosure. These changes should
also be rechecked to identify any insecure settings on a continued basis through a cron job.

Remediation:
Perform the following:

1. Set ownership on the $APACHE_PREFIX directories such as /usr/local/apache2:

$ chown –R root:root $APACHE_PREFIX

Audit:

1. Identify files in the Apache directory not owned by root :

find $APACHE_PREFIX \! -user root -ls

2. Identify files in the Apache directory with a group different from root :

22 | P a g e

find $APACHE_PREFIX \! -group root -ls

Default Value:
Default ownership and group is a mixture of the user:group that built the software and
root:root.

1.3.5 Apache Directory and File Permissions (Level 1, Scorable)

Description:
The permission on the Apache directories should be rwxr-xr-x (755) and the file
permissions should be similar except not executable if executable is not appropriate. This
applies to all of the Apache software directories and files installed with the possible
exception in some cases may have a designated group with write access for the Apache web
document root ($APACHE_PREFIX/htdocs) are likely to need a designated group to allow
web content to be updated. In addition the /bin directory and executables should be set to
not be readable by other.

Rationale:
Setting the appropriate permissions on the Apache files and directories can help to
prevent/mitigate exploitation severity and information disclosure. These changes should
also be rechecked to identify any insecure settings on a continued basis through a cron job.
Also preventing reading of the Apache executables by “other” prevents non-root users from
making copies of the executables which could then be modified.

Remediation:
Perform the following to set the permissions on the $APACHE_PREFIX directories and then
remove other read permissions on the bin directory and its contents:

chmod –R u=rwX,g=rX,o=rX $APACHE_PREFIX

chmod –R u=rwX,g=rX,o=X $APACHE_PREFIX/bin

Audit:
Identify files or directories in the Apache directory with other write access, excluding
symbolic links:

find -L $APACHE_PREFIX \! -type l \! -type s -perm /o=w -ls

Default Value:
The default permissions are mostly rwXr-Xr-X except for some files which have group or
other permissions which seem affected by the umask of the user performing the build.

1.3.6 Core Dump Directory Security (Level 1, Scorable)

Description:
The CoreDumpDirectory directive can be used to specify a directory which Apache
attempts to switch before dumping core for debugging. The default directory is the Apache
ServerRoot directory, however on Linux systems core dumps will be disabled by default.

23 | P a g e

Most production environments should leave core dumps disabled. In the event that core
dumps are needed, the directory needs to be a writable directory by Apache, and should
meet the security requirements defined below in the remediation and audit.

Rationale:
Core dumps are snapshots of memory and may contain sensitive information that should
not be accessible by other accounts on the system.

Remediation:
Either remove the CoreDumpDirectory directive from the Apache configuration files or
ensure that the configured directory meets the following requirements.

1. CoreDumpDirectory is not be within the Apache web document root
($APACHE_PREFIX/htdocs)

2. must be owned by root and have a group ownership of the Apache group (as defined

via the Group directive)

chown root:apache /var/log/httpd

3. must have no read-write-search access permission for other users.

chmod o-rwx /var/log/httpd

Audit:
Verify that either the CoreDumpDirectory directive is not enabled in any of the Apache
configuration files or that the configured directory meets the following requirements:

1. CoreDumpDirectory is not be within the Apache web document root
($APACHE_PREFIX/htdocs)

2. must be owned by root and have a group ownership of the Apache group (as defined

via the Group directive)

3. must have no read-write-search access permission for other users. (e.g. o=rwx)

Default Value:
The default core dump directory is the ServerRoot directory, which is should not be
writable. Core dumps will be disabled if the directory is not writable by the Apache user.
Also on Linux systems core dumps will be disabled if the server is started as root and
switches to a non-root user, as is typical

References:

1. Apache CoreDumpDirectory directive
http://httpd.apache.org/docs/2.2/mod/mpm_common.html#coredumpdirectory

http://httpd.apache.org/docs/2.2/mod/mpm_common.html#coredumpdirectory

24 | P a g e

1.3.7 Lock File Security (Level 1, Scorable)

Description:
The LockFile directive sets the path to the lock file used when Apache uses fcntl(2) or
flock(2) system calls to implement a mutex. Most Linux systems will default to using
semaphores instead, so the directive may not apply. However in the event a lock file is
used, it is important for the lock file to be in a locally directory that is not writable by other
users.

Rationale:
If the LockFile is placed in a writable directory other accounts could create a denial of
service attack and prevent the server from starting by creating a lock file with the same
name.

Remediation:
1. Find the directory in which the LockFile would be created. The default value is the

ServerRoot/logs directory.
2. Modify the directory if the LockFile if it is a directory within the Apache

DocumentRoot
3. Change the ownership and group to be root:root, if not already.
4. Change the permissions so that the directory is only writable by root, or the user

under which apache initially starts up (default is root),
5. Check that the lock file directory is on a locally mounted hard drive rather than an

NFS mounted file system.

Audit:
1. Find the directory in which the LockFile would be created. The default value is the

ServerRoot/logs directory.
2. Verify that the lock file directory is not a directory within the Apache DocumentRoot
3. Verify that the ownership and group of the directory is root:root (or the user

under which apache initially starts up if not root).
4. Change the permissions so that the directory is only writable by root (or the startup

user if not root),
5. Check that the lock file directory is on a locally mounted hard drive rather than an

NFS mounted file system.

Default Value:
The default lock file is logs/accept.lock

References:

1. Apache LockFile directive
http://httpd.apache.org/docs/2.2/mod/mpm_common.html#lockfile

1.3.8 Pid File Security (Level 1, Scorable)

Description:

http://httpd.apache.org/docs/2.2/mod/mpm_common.html#lockfile

25 | P a g e

The PidFile directive sets the file path to the process ID file to which the server records
the process id of the server, which is useful for sending a signal to the server process or for
checking on the health of the process.

Rationale:
If the PidFile is placed in a writable directory, other accounts could create a denial of
service attack and prevent the server from starting by creating a PID file with the same
name.

Remediation:
1. Find the directory in which the PidFile would be created. The default value is the

ServerRoot/logs directory.
2. Modify the directory if the PidFile is in a directory within the Apache DocumentRoot
3. Change the ownership and group to be root:root, if not already.
4. Change the permissions so that the directory is only writable by root, or the user

under which apache initially starts up (default is root),

Audit:
1. Find the directory in which the PidFile would be created. The default value is the

ServerRoot/logs directory.
2. Verify that the process ID file directory is not a directory within the Apache

DocumentRoot
3. Verify that the ownership and group of the directory is root:root (or the user

under which apache initially starts up if not root).
4. Change the permissions so that the directory is only writable by root (or the startup

user if not root).

Default Value:
The default process ID file is logs/httpd.pid

References:

1. Apache PidFile directive
http://httpd.apache.org/docs/2.2/mod/mpm_common.html#pidfile

1.3.9 ScoreBoard File Security (Level 1, Scorable)

Description:
The ScoreBoardFile directive sets a file path which the server will use for Inter-Process
Communication (IPC) among the Apache processes. On most Linux platform shared
memory will be used instead of a file in the file system, so this directive is not generally
needed and does need to be specified. However, if the directive is specified, then Apache
will use the configured file for the inter-process communication. Therefore if it is specified
it needs to be located in a secure directory.

Rationale:
If the ScoreBoardFile is placed in a writable directory, other accounts could create a denial
of service attack and prevent the server from starting by creating a file with the same

http://httpd.apache.org/docs/2.2/mod/mpm_common.html#pidfile

26 | P a g e

name, and or users could monitor and disrupt the communication between the processes
by reading and writing to the file.

Remediation:

1. Check to see if the ScoreBoardFile is specified in any of the Apache configuration
files. If it is not present no changes are required.

2. If the directive is present, find the directory in which the ScoreBoardFile would be
created. The default value is the ServerRoot/logs directory.

3. Modify the directory if the ScoreBoardFile is in a directory within the Apache
DocumentRoot

4. Change the ownership and group to be root:root, if not already.
5. Change the permissions so that the directory is only writable by root, or the user

under which apache initially starts up (default is root),
6. Check that the scoreboard file directory is on a locally mounted hard drive rather

than an NFS mounted file system.

Audit:

1. Check to see if the ScoreBoardFile is specified in any of the Apache configuration
files. If it is not present the configuration is compliant.

2. Find the directory in which the ScoreBoardFile would be created. The default value
is the ServerRoot/logs directory.

3. Verify that the scoreboard file directory is not a directory within the Apache
DocumentRoot

4. Verify that the ownership and group of the directory is root:root (or the user
under which Apache initially starts up if not root).

5. Change the permissions so that the directory is only writable by root (or the startup
user if not root).

6. Check that the scoreboard file directory is on a locally mounted hard drive rather
than an NFS mounted file system.

Default Value:
The default scoreboard file is logs/apache_status

References:

1. Apache ScoreBoardFile directive
http://httpd.apache.org/docs/2.2/mod/mpm_common.html#scoreboardfile

1.4 Apache Access Control

1.4.1 Deny Access to OS Root Directory (Level 1, Scorable)

Description:
The Apache Directory directive allows for directory specific configuration of access
controls and many other features and options. One important usage is to create a default

http://httpd.apache.org/docs/2.2/mod/mpm_common.html#scoreboardfile

27 | P a g e

deny policy that does not allow access to Operating system directories and files, except for
those specifically allowed. This is done, with denying access to the OS root directory.

Rationale:
One aspect of Apache, which is occasionally misunderstood, is the feature of default access.
That is, unless you take steps to change it, if the server can find its way to a file through
normal URL mapping rules, it can and will serve it to clients. Having a default deny is a
predominate security principal, and then helps prevent the unintended access, and we do
that in this case by denying access to the OS root directory. The Order directive is
important as it provides for other Allow directives to override the default deny.

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find a root <Directory> element.

2. Ensure there is a single Order directive and set the value to deny, allow
3. Ensure there is a Deny directive, and set the value to from all.
4. Remove any Allow directives from the root <Directory> element.

<Directory />

 . . .

 Order deny,allow

 Deny from all

 . . .

</Directory>

Audit:
Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find a root <Directory> element.

2. Ensure there is a single Order directive with the value of deny, allow
3. Ensure there is a Deny directive, and with the value of from all.
4. Ensure there are no Allow directives in the root <Directory> element.

The following may be useful in extracting root directory elements from the Apache
configuration for auditing.

$ perl -ne 'print if /^ *<Directory *\//i .. /<\/Directory/i'

$APACHE_PREFIX /conf/httpd.conf

Default Value:
The following is the default root directory configuration:

<Directory />

 . . .

28 | P a g e

 Order deny,allow

 Deny from all

</Directory>

References:

1. Directory Directive http://httpd.apache.org/docs/2.2/mod/core.html#directory

2. Mod Authz http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html

1.4.2 Allow Appropriate Access to Web Content (Level 1, Not Scorable)

Description:
In order to serve Web content the Apache Allow directive will be need to be used to allow
for appropriate access to directories, locations and virtual hosts that contains web content.

Rationale:
The Allow directive is used within a directory, a location or other context to allow
appropriate access. Access may be allowed to all, or to specific networks, or specific
domain names as appropriate. Refer to the Apache documentation
http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html for details.

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find all <Directory> and <Location> elements. There should be one for the
document root and any special purpose directories or locations. There are likely to
be other access control directives in other contexts, such as virtual hosts or special
elements like <Proxy>.

2. Add a single Order directive and set the value to deny, allow
3. Include the appropriate Allow and Deny directives, with values that are appropriate

for the purposes of the directory.

The configurations below are just a few possible examples.

<Directory "/var/www/html/">

Order deny,allow

deny from all

allow from 192.169.

</Directory>

<Directory "/var/www/html/">

Order allow,deny

allow from all

</Directory>

<Location /usage>

 Order deny,allow

http://httpd.apache.org/docs/2.2/mod/core.html#directory
http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html
http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html

29 | P a g e

 Deny from all

 Allow from 127.0.0.1

 Allow from ::1

</Location>

Audit:
Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find all <Directory> elements.

2. Ensure there is a single Order directive with the value of deny, allow for each.
3. Ensure the Allow and Deny directives have values that are appropriate for the

purposes of the directory.

The following command may be useful to extract <Directory> and <Location> elements
and Allow directives from the apache configuration files.

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'

$APACHE_PREFIX/conf/httpd.conf $APACHE_PREFIX/conf.d/*.conf

perl -ne 'print if /^ *<Location */i .. /<\/Location/i'

$APACHE_PREFIX/conf/httpd.conf $APACHE_PREFIX/conf.d/*.conf

grep -i -C 6 -i 'Allow[[:space:]]from' $APACHE_PREFIX/conf/httpd.conf

$APACHE_PREFIX/conf.d/*.conf

Default Value:
The following is the default Web root directory configuration:

<Directory "/usr/local/apache2/htdocs">

 . . .

 Order deny,allow

 Allow from all

</Directory>

References:

1. Directory Directive http://httpd.apache.org/docs/2.2/mod/core.html#directory

2. Mod Authz http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html

1.4.3 Restrict OverRide for the OS Root Directory (Level 1, Scorable)

Description:
The Apache OverRide directive allows for .htaccess files to be used to override much of
the configuration, including authentication, handling of document types, auto generated
indexes, access control, and options. When the server finds an .htaccess file (as specified
by AccessFileName) it needs to know which directives declared in that file can override
earlier access information. When this directive is set to None, then .htaccess files are

http://httpd.apache.org/docs/2.2/mod/core.html#directory
http://httpd.apache.org/docs/2.2/mod/mod_authz_host.html

30 | P a g e

completely ignored. In this case, the server will not even attempt to read .htaccess files in
the file system. When this directive is set to All, then any directive which has the
.htaccess Context is allowed in .htaccess files.

Refer to the Apache 2.2 documentation for details
http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride

Rationale:
While the functionality of .htaccess files is sometimes convenient, usage decentralizes
access controls and increases the risk of configurations being changed or viewed
inappropriately by an unintended or rogue .htaccess file. Consider also that some of the
more common vulnerabilities in web servers and web applications allow the web files to be
viewed or to be modified. Given this, it is wise to keep the configuration of the web server
from being placed in .htaccess files

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find a root <Directory> element.

2. Add a single AllowOverride directive if there is none.
3. Set the value for AllowOverride to None.

<Directory />

 . . .

 AllowOverride None

 . . .

</Directory>

Audit:
Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find a root <Directory> element.

2. Ensure there is a single AllowOverride directive with the value of None.

The following may be useful for extracting root directory elements from the Apache
configuration for auditing.

$ perl -ne 'print if /^ *<Directory *\//i .. /<\/Directory/i'

$APACHE_PREFIX /conf/httpd.conf

Default Value:
The following is the default root directory configuration:

<Directory />

 AllowOverride None

http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride

31 | P a g e

 . . .

</Directory>

References:

1. AllowOverride Directive
http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride

1.4.4 Restrict OverRide for All Directories (Level 1, Scorable)

Description:
The Apache AllowOverride directive allows for .htaccess files to be used to override
much of the configuration, including authentication, handling of document types, auto
generated indexes, access control, and options. When the server finds an .htaccess file (as
specified by AccessFileName) it needs to know which directives declared in that file can
override earlier access information. When this directive is set to None, then .htaccess files
are completely ignored. In this case, the server will not even attempt to read .htaccess
files in the file system. When this directive is set to All, then any directive which has the
.htaccess Context is allowed in .htaccess files.

Refer to the Apache 2.2 documentation for details
http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride

Rationale:
While the functionality of htaccess files is sometimes convenient, usage decentralizes the
access controls and increases the risk of configurations being changed or viewed
inappropriately by an unintended or rogue .htaccess file. Consider also that some of the
more common vulnerabilities in web servers and web applications allow the web files to be
viewed or to be modified. Given this, it is wise to keep the configuration of the web server
from being placed in .htaccess files

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find AllowOverride directives.

2. Set the value for all AllowOverride directives to None.

 . . .

 AllowOverride None

 . . .

Audit:
Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find any AllowOverride directives.

http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride
http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride

32 | P a g e

2. Ensure there the value for AllowOverride is None.

grep –i AllowOverride $APACHE_PREFIX/conf/httpd.conf

Default Value:
Not Applicable

References:

1. AllowOverride Directive
http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride

1.5 Minimize Features, Content and Options

1.5.1 Restrict Options for the OS Root Directory (Level 1, Scorable)

Description:
The Apache Options directive allows for specific configuration of options, including
execution of CGI, following symbolic links, server side includes, and content negotiation.
Refer to the Apache 2.2 documentation for details
http://httpd.apache.org/docs/2.2/mod/core.html#options

Rationale:
The Options directive for the root OS level is used to create a default minimal options
policy that allows only the minimal options at the root directory level. Then for specific
web sites or portions of the web site, options may be enabled as needed and appropriate.
No options should be enabled and the value for the Options Directive should be None.

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find a root <Directory> element.

2. Add a single Options directive if there is none.
3. Set the value for Options to None.

<Directory />

 . . .

 Options None

 . . .

</Directory>

Audit:
Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find a root <Directory> element.

2. Ensure there is a single Options directive with the value of None.

http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride
http://httpd.apache.org/docs/2.2/mod/core.html#options

33 | P a g e

The following may be useful for extracting root directory elements from the Apache
configuration for auditing.

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'

$APACHE_PREFIX/conf/httpd.conf

Default Value:
The following is the default root directory configuration:

<Directory />

 Options FollowSymLinks

 . . .

</Directory>

References:

1. Options Directive http://httpd.apache.org/docs/2.2/mod/core.html#options

1.5.2 Restrict Options for the Web Root Directory (Level 1, Scorable)

Description:
The Apache Options directive allows for specific configuration of options, including

 execution of CGI,
 following symbolic links,
 server side includes, and
 content negotiation

Refer to the Apache 2.2 documentation for details
http://httpd.apache.org/docs/2.2/mod/core.html#options

Rationale:
The Options directive at the web root or document root level also needs to be restricted to
the minimal options required. A setting of None is highly recommended, however it is
recognized that at this level content negotiation may be needed if multiple languages are
supported. No other options should be enabled.

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find the document root <Directory> element.

2. Add or modify any existing Options directive to have a value of None or
Multiviews, if multi views are needed.

<Directory ―/usr/local/apache2/htdocs‖>

 . . .

http://httpd.apache.org/docs/2.2/mod/core.html#options
http://httpd.apache.org/docs/2.2/mod/core.html#options

34 | P a g e

 Options None

 . . .

</Directory>

Audit:
Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find the document root <Directory> elements.

2. Ensure there is a single Options directive with the value of None or Multiviews.

The following may be useful in extracting root directory elements from the Apache
configuration for auditing.

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'

$APACHE_PREFIX/conf/httpd.conf

Default Value:
The following is the default document root directory configuration:

<Directory "/usr/local/apache2/htdocs">

 Options Indexes FollowSymLinks

 . . .

</Directory>

References:

1. Options Directive http://httpd.apache.org/docs/2.2/mod/core.html#options

1.5.3 Minimize Options for Other Directories (Level 1, Scorable)

Description:
The Apache Options directive allows for specific configuration of options, including
execution of CGI, following symbolic links, server side includes, and content negotiation.
Refer to the Apache 2.2 documentation for details
http://httpd.apache.org/docs/2.2/mod/core.html#options

Rationale:
Likewise the options for other directories and hosts needs to be restricted to the minimal
options required. A setting of None is recommended, however it is recognized that other
options may be needed in some cases:

 MultiViews –Is appropriate if content negotiation is required such as for multiple
language are supported. Otherwise, it is recommended that this option be disabled.

http://httpd.apache.org/docs/2.2/mod/core.html#options
http://httpd.apache.org/docs/2.2/mod/core.html#options

35 | P a g e

 ExecCGI – Enables the execution of CGI scripts via the mod_cgi module. It is
recommended that this option be disabled for all directories that not are specifically
used for CGIs.

 FollowSymLinks & SymLinksIfOwnerMatch – The following of symbolic links is not
recommended and should be disabled. The usage of symbolic links opens up
additional risk for possible attacks that may use inappropriate symbolic links to
access content outside of the document root of the web server. Also consider that it
could be combined with a vulnerability that allowed an attacker or insider to create
an inappropriate link. The option SymLinksIfOwnerMatch is much safer in that the
ownership must match for the link to be used, however keep in mind there is
additional overhead created by requiring Apache to check the ownership.

 Includes & IncludesNOEXEC – The IncludesNOEXEC option should only be needed
when server side includes are required. The full Includes option should not be
used as it also allows execution of arbitrary shell commands. See Apache Mod
Include for details http://httpd.apache.org/docs/2.2/mod/mod_include.html. It is
recommended that the Includes and IncludesNOEXEC options be disabled.

 Indexes – The Indexes option causes apache to display the web visitor with content
listing for the requested directory if no index file is present. It is recommended that
the Indexes directive be disabled.

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find the all <Directory> elements.

2. Add or modify any existing Options directive to NOT have a value of Includes.
Other options may be set if necessary and appropriate as described above.

Audit:
Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration
files) to find the all <Directory> elements.

2. Ensure that the Options directives do not enable Includes.

The following may be useful for extracting directory elements from the Apache
configuration for auditing.

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'

$APACHE_PREFIX/conf/httpd.conf

or

http://httpd.apache.org/docs/2.2/mod/mod_include.html

36 | P a g e

grep –i -A 12 '<Directory[[:space:]]/>' $APACHE_PREFIX/conf/httpd.conf

Default Value:
Not Applicable

References:

1. Options Directive http://httpd.apache.org/docs/2.2/mod/core.html#options

1.5.4 Remove Default HTML Content (Level 1, Scorable)

Description:
Most Web Servers include Apache installations have default content which is not needed or
appropriate for production use. The primary function for these sample content is to
provide a default web site, provide user manuals or to demonstrate special features of the
web server. All content that is not needed should be removed.

Rationale:
Historically these sample content and features have been remotely exploited and can
provide different levels of access to the server. In the Microsoft arena, Code Red exploited a
problem with the index service provided by the Internet Information Service. Usually, these
routines are not written for production use and consequently little thought was given to
security in their development.

Remediation:
Review all pre-installed content and remove content which is not required. In particular
look for the unnecessary content which may be found in the document root directory, a
configuration directory such as conf/extra directory, or as a Unix/Linux package

1. Remove the default index.html or welcome page, if it is a separate package or
comment out the configuration if it is part of main Apache httpd package such as it
is on Red Hat Linux. Removing a file such as the welcome.conf shown below is not
recommended as it may get replaced if the package is updated.

This configuration file enables the default "Welcome"

page if there is no default index page present for

the root URL. To disable the Welcome page, comment

out all the lines below.

##<LocationMatch "^/+$">

Options -Indexes

ErrorDocument 403 /error/noindex.html

##</LocationMatch>

2. Remove the Apache user manual content or comment out configurations
referencing the manual

yum erase httpd-manual

http://httpd.apache.org/docs/2.2/mod/core.html#options

37 | P a g e

3. Remove or comment out any Server Status handler configuration.

Allow server status reports generated by mod_status,

with the URL of http://servername/server-status

Change the ".example.com" to match your domain to enable.

#<Location /server-status>

SetHandler server-status

Order deny,allow

Deny from all

Allow from .example.com

#</Location>

4. Remove or comment out any Server Information handler configuration.

Allow remote server configuration reports, with the URL of

http://servername/server-info (requires that mod_info.c be loaded).

Change the ".example.com" to match your domain to enable.

#<Location /server-info>

SetHandler server-info

Order deny,allow

Deny from all

Allow from .example.com

#</Location>

5. Remove or comment out any other handler configuration such as perl-status.

This will allow remote server configuration reports, with the URL of

http://servername/perl-status

Change the ".example.com" to match your domain to enable.

#<Location /perl-status>

SetHandler perl-script

PerlResponseHandler Apache2::Status

Order deny,allow

Deny from all

Allow from .example.com

#</Location>

Audit:
Perform the following to determine if the recommended state is implemented:

1. Verify the document root directory and the configuration files do not provide for
default index.html or welcome page,

2. Ensure the Apache User Manual content is not installed by checking the
configuration files for manual location directives.

3. Verify the Apache configuration files do not have the Server Status handler
configured.

38 | P a g e

4. Verify that the Server Information handler is not configured.

5. Verify that any other handler configurations such as perl-status is not enabled.

Default Value:
The default source build extra content available in the /usr/local/apache2/conf/extra/
directory, but the configuration of the extra content is commented out by default. The only
default content is a minimal barebones index.html in the document root which contains:

<html><body><h1>It works!</h1></body></html>

1.5.5 Remove Default CGI Content (Level 1, Scorable)

Description:
Most Web Servers include Apache installations have default CGI content which is not
needed or appropriate for production use. The primary function for these sample programs
is to demonstrate the capabilities of the web server. All content that is not needed should
be removed.

Rationale:
CGI programs have a long history of security bugs and problems associated with
improperly accepting user-input. Since these programs are often targets of attackers, we
need to make sure that there are no stray CGI programs that could potentially be used for
malicious purposes. Usually these programs are not written for production use and
consequently little thought was given to security in their development. The printenv and
test-cgi script are common default CGI which disclose inappropriate information about
the web server including directory paths and detailed version and configuration
information.

Remediation:
Review all pre-installed CGI programs and remove programs which are not required. In
particular, look for the unnecessary CGI programs which may be found in the directories
configured with ScriptAlias, Script or other Script* directives. Often, CGI directories
are named cgi-bin. Also, CGI AddHandler or SetHandler directives may also be in use for
specific handlers such as perl, python and PHP.

1. Locate cgi-bin files and directories enabled in the Apache configuration via Script,
ScriptAlias or other Script* directives.

2. Remove the printenv default CGI in cgi-bin directory if it is installed.

rm $APACHE_PREFIX/cgi-bin/printenv

3. Remove the test-cgi file from the cgi-bin directory if it is installed.

rm $APACHE_PREFIX/cgi-bin/test-cgi

39 | P a g e

4. Review and remove any other cgi-bin files which are not needed for business
purposes.

Audit:
Perform the following to determine if the recommended state is implemented:

1. Locate cgi-bin files and directories enabled in the Apache configuration via Script,
ScriptAlias or other Script* directives.

2. Ensure the printenv CGI is not installed in any configured cgi-bin directory.

3. Verify that the test-cgi file is not installed in any configured cgi-bin directory.

4. Verify that other CGI content has a necessary business function.

Default Value:
The default source build includes the following cgi programs in the
/usr/local/apache2/cgi-bin/ directory.

 printenv
 test-cgi

1.5.6 Limit HTTP Request Methods (Level 1, Scorable)

Description:
Use the Apache <LimitExcept> directive to restrict unnecessary HTTP request methods of
the web server to only accept and process the GET, HEAD, POST and OPTIONS HTTP request
methods. Refer to the Apache documentation for more details
http://httpd.apache.org/docs/2.2/mod/core.html#limitexcept

Rationale:
The HTTP 1.1 protocol supports several request methods which are rarely used and
potentially high risk. For example, methods such as PUT and DELETE are rarely used and
should be disabled in keeping with the primary security principal of minimize features and
options. Also since the usage of these methods is typically to modify resources on the web
server, they should be explicitly disallowed. For normal web server operation, you will
typically need to allow only the GET, HEAD and POST request methods. This will allow for
downloading of web pages and submitting information to web forms. The OPTIONS request
method will also be allowed as it used to request which HTTP request methods are
allowed. Unfortunately the Apache <LimitExcept> directive does not deny the TRACE
request method. The TRACE request method will be disallowed in another benchmark
recommendation with the TraceEnable directive.

Remediation:
Perform the following to implement the recommended state:

http://httpd.apache.org/docs/2.2/mod/core.html#limitexcept

40 | P a g e

1. Locate the Apache configuration files and included configuration files.

2. Search for the <Directory> directive on the document root directory such as:

<Directory "/usr/local/apache2/htdocs">

. . .

</Directory>

3. Ensure that the access control order within the <Directory> directive is allow,deny

Order allow,deny

4. Add a <LimitExcept> directive as shown below within the group of document root

<Directory> directives.

Limit HTTP methods to HEAD, GET and POST, but it does not limit TRACE

 <LimitExcept GET POST OPTIONS>

 deny from all

 </LimitExcept>

5. Search for other <Directory> directives in the Apache configuration files other than

the OS root directory, and add the same <LimitExcept> directives to each. It is very
important to understand that the <Directory> directive is based on the OS file
system hierarchy as accessed by Apache and not the hierarchy of the locations
within web site URLs.

<Directory "/usr/local/apache2/cgi-bin">

 . . .

 Order allow,deny

 . . .

 # Limit HTTP methods

 <LimitExcept GET POST OPTIONS>

 deny from all

 </LimitExcept>

</Directory>

Audit:
Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.

2. Search for all <Directory> directives other than the on the OS root directory.

3. Ensure that group contains a single Order directive within the <Directory>
directive with a value of allow, deny

41 | P a g e

4. Verify the <LimitExcept> directive does not include any HTTP methods other than
GET, POST, and OPTIONS. (It may contain fewer methods.).

Default Value:
No Limits on HTTP methods.

References:

1. Apache LimitExcept Directive
http://httpd.apache.org/docs/2.2/mod/core.html#limitexcept

2. HTTP 1.1 RFC http://www.ietf.org/rfc/rfc2616.txt

1.5.7 Disable HTTP TRACE Method (Level 1, Scorable)

Description:
Use the Apache TraceEnable directive to disable the HTTP TRACE request method. Refer to
the Apache documentation for more details
http://httpd.apache.org/docs/2.2/mod/core.html#traceenable

Rationale:
The HTTP 1.1 protocol requires support for the TRACE request method which reflects the
request back as a response and was intended for diagnostics purposes. The TRACE method
is not needed and is easily subject to abuse and should be disabled.

Remediation:
Perform the following to implement the recommended state:

1. Locate the main Apache configuration file such as httpd.conf.

2. Add a TraceEnable directive to the server level configuration with a value of off.
Server level configuration is the top level configuration, not nested within any other
directives like <Directory> or <Location>.

TraceEnable off

Audit:
Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.

2. Verify there is a single TraceEnable directive configured with a value of off.

Default Value:
The default value is for the TRACE method to be enabled.

TraceEnable on

http://httpd.apache.org/docs/2.2/mod/core.html%23limitexcept
http://www.ietf.org/rfc/rfc2616.txt
http://httpd.apache.org/docs/2.2/mod/core.html#traceenable

42 | P a g e

References:

1. Apache TraceEnable Directive
http://httpd.apache.org/docs/2.2/mod/core.html#traceenable

2. HTTP 1.1 RFC http://www.ietf.org/rfc/rfc2616.txt

1.5.8 Restrict HTTP Protocol Versions (Level 1, Scorable)

Description:
The Apache modules mod_rewrite or mod_security can be used to disallow old and invalid
HTTP protocols versions. The HTTP version 1.1 RFC is dated June 1999, and has been
supported by Apache since version 1.2. It should no longer be necessary to allow ancient
versions of HTTP such as 1.0 and prior. Refer to the Apache documentation on
mod_rewrite for more details http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

Rationale:
Many malicious automated programs, vulnerability scanners and fingerprinting tools will
send abnormal HTTP protocol versions to see how the web server responds. These
requests are usually part of the attacker’s enumeration process and therefore it is
important that we respond by denying these requests.

Remediation:
Perform the following to implement the recommended state:

1. Load the mod_rewrite module for Apache by doing either one of the following:

a. Build Apache with mod_rewrite statically loaded during the build, by adding
the --enable-rewrite option to the ./configure script.

./configure --enable-rewrite

b. Or dynamically loading the module with the LoadModule directive in the

httpd.conf configuration file.

LoadModule rewrite_module modules/mod_rewrite.so

2. Add the RewriteEngine directive to the configuration with the value of on so that

the rewrite engine is enabled.

RewriteEngine On

3. Locate the main Apache configuration file such as httpd.conf and add the following
rewrite condition to match HTTP/1.1 and the rewrite rule to the top server level
configuration to disallow other protocol versions.

RewriteCond %{THE_REQUEST} !HTTP/1\.1$

RewriteRule .* - [F]

http://httpd.apache.org/docs/2.2/mod/core.html%23traceenable
http://www.ietf.org/rfc/rfc2616.txt
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

43 | P a g e

4. By default, mod_rewrite configuration settings from the main server context are not
inherited by virtual hosts. Therefore it is also necessary to add the following
directives in each <VirtualHost> section to inherit the main server settings.

RewriteEngine On

RewriteOptions Inherit

Audit:
Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.

2. Verify there is a rewrite condition that disallows requests that do not include the
HTTP/1.1 header as shown below.

RewriteEngine On

RewriteCond %{THE_REQUEST} !HTTP/1\.1$

3. Verify the following directives are included in each <VirtualHost> section so that
the main server settings will be inherited.

RewriteEngine On

RewriteOptions Inherit

Default Value:
The default value is for the RewiteEngine:

RewriteEngine off

References:

1. Apache Rewrite Module http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

1.5.9 Restrict Access to .ht* files (Level 1, Scorable)

Description:
Restrict access to any files beginning with .ht using the FileMatch directive.

Rationale:
The default name for access filename which allows files in web directories to override the
Apache configuration is .htaccess. The usage of access files should not be allowed, but as
a defense in depth a FilesMatch directive is recommended to prevent web clients from
viewing those files in case they are created. Also a common name for web password and
group files is .htpasswd and .htgroup. Neither of these files should be placed in the
document root, but in the event they are, the FilesMatch directive can be used to prevent
them from being viewed by web clients.

Remediation:

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

44 | P a g e

Perform the following to implement the recommended state:

1. Add or modify the following lines in the apache configuration at the server
configuration level.

<FilesMatch "^\.ht">

 Order allow,deny

 Deny from all

 Satisfy All

</FilesMatch>

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify that a FileMatch directive similar to the one above is present in the apache
configuration and not commented out.

Default Value:
The default source build has the FilesMatch directive as shown,

The following lines prevent .htaccess and .htpasswd files from being

viewed by Web clients.

<FilesMatch "^\.ht">

 Order allow,deny

 Deny from all

 Satisfy All

</FilesMatch>

References:

1. FilesMatch directive http://httpd.apache.org/docs/2.2/mod/core.html#filesmatch

1.5.10 Restrict File Extensions (Level 2, Scorable)

Description:
Restrict access to inappropriate file extensions that are not expected to be a legitimate part
of web sites using the FileMatch directive.

Rationale:
There are many files that are often left within the web server document root that could
provide an attacker with sensitive information. Most often these files are mistakenly left
behind after installation, trouble-shooting, or backing up files before editing. Regardless of
the reason for their creation, these files can still be served by Apache even when there is no
hyperlink pointing to them. The web administrators should use the FilesMatch directive to
restrict access to only those file extensions that are appropriate for the web server. Rather
than create a list of potentially inappropriate file extensions such as .bak, .config, .old,
etc, it is recommend instead that a white list of the appropriate and expected file

http://httpd.apache.org/docs/2.2/mod/core.html%23filesmatch

45 | P a g e

extensions for the web server be created, reviewed and restricted with a FileMatch
directive.

Remediation:
Perform the following to implement the recommended state:

1. Compile a list of existing file extension on the web server. The following find/awk
command may be useful, but is likely to need some customization according to the
appropriate webroot directories for your web server. Please note that the find skips
over any files without a dot (.) in the file name, as these are not expected to be
appropriate web content.

find */htdocs -type f -name '*.*' | awk -F. '{print $NF }' | sort -u

2. Review the list of existing file extensions, for appropriate content for the web
server, remove those that are inappropriate and add any additional file extensions
expected to be added to the web server in the near future.

3. Add the FileMatch directive below which denies access to all files by default.

Block all files by default, unless specifically allowed.

<FilesMatch "^.*$">

Order Deny,Allow

Deny from all

</FilesMatch>

4. Add another FileMatch directive that allows access to those file extensions
specifically allowed from the review process in step 2. An example FileMatch
directive is below. The file extensions in the regular expression should match your
approved list, and not necessarily the expression below.

Allow files with specifically approved file extensions

Such as (css, htm; html; js; pdf; txt; xml; xsl; ...),

images (gif; ico; jpeg; jpg; png; ...), multimedia

<FilesMatch "^.*\.(css|html?|js|pdf|txt|xml|xsl|gif|ico|jpe?g|png)$">

Order Deny,Allow

Allow from all

</FilesMatch>

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify that the FileMatch directive that denies access to all files is present as shown
in step 3 of the remediation with the order of Deny,Allow.

2. Verify that there is another FileMatch directive similar to the one in step 4 of the
remediation, with an expression that matches the approved file extensions.

46 | P a g e

Default Value:
There is no restriction on file extensions in the default configuration.

The following lines prevent .htaccess and .htpasswd files from being

viewed by Web clients.

<FilesMatch "^\.ht">

 Order allow,deny

 Deny from all

 Satisfy All

</FilesMatch>

References:

1. FilesMatch directive http://httpd.apache.org/docs/2.2/mod/core.html#filesmatch

1.6 Operations - Logging, Monitoring and Maintenance
Operational procedures of logging, monitoring and maintenance are vital to protecting
your web servers as well as the rest of the infrastructure.

1.6.1 Configure the Error Log (Level 1, Scorable)

Description:
The LogLevel directive is used to configure the severity level for the error logs. While the
ErrorLog directive configures the error log file name. The log level values are the standard
syslog levels of emerg, alert, crit, error, warn, notice, info and debug. The
recommended level is notice, so that all errors from the emerg level through notice level will
be logged.

Rationale:
The server error logs are invaluable because they can also be used to spot any potential
problems before they become serious. Most importantly, they can be used to watch for
anomalous behavior such as a lot of “not found” or “unauthorized” errors may be an indication
that an attack is pending or has occurred.

Remediation:
Perform the following to implement the recommended state:

1. Add or modify the LogLevel in the apache configuration to have a value of notice or
lower. Note that is it is compliant to have a value of info or debug if there is a need
for a more verbose log and the storage and monitoring processes are capable of
handling the extra load. The recommended value is notice.

LogLevel notice

2. Add an ErrorLog directive if not already configured. The file path may be relative,

absolute, or the logs may be configured to be sent to a syslog server.

ErrorLog "logs/error_log"

http://httpd.apache.org/docs/2.2/mod/core.html%23filesmatch

47 | P a g e

3. Add a similar ErrorLog directive for each virtual host configured if the virtual host

will have different people responsible for the web site. Each responsible individual
or organization needs access to their own web logs, and needs the
skills/training/tools for monitor the logs.

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify the LogLevel in the apache server configuration has a value of notice or
lower. Note that it is also compliant to have a value of info or debug if there is a
need for a more verbose log and the storage and monitoring processes are capable
of handling the extra load. The recommended value is notice.

2. Verify the ErrorLog directive is configured to an appropriate log file or syslog
facility.

3. Verify there is a similar ErrorLog directive for each virtual host configured if the
virtual host will have different people responsible for the web site.

Default Value:
The following is the default configuration:

LogLevel warn

ErrorLog "logs/error_log"

References:

1. Apache Log Files http://httpd.apache.org/docs/2.2/logs.html
2. LogLevel http://httpd.apache.org/docs/2.2/mod/core.html#loglevel
3. ErrorLog http://httpd.apache.org/docs/2.2/mod/core.html#errorlog

1.6.2 Configure the Access Log (Level 1, Scorable)

Description:
The LogFormat directive defines the format and information to be included in the access log
entries. The CustomLog directive specifies the log file, syslog facility or piped logging
utility.

Rationale:
The server access logs are also invaluable for a variety of reasons. They can be used to
determine what resources are being used most. Most importantly, they can be used to
investigate anomalous behavior that may be an indication that an attack is pending or has
occurred. If the server only logs errors, and does not log successful access, then it is very
difficult to investigate incidents. You may see that the errors stop, and wonder if the
attacker gave up, or was the attack successful.

Remediation:

http://httpd.apache.org/docs/2.2/logs.html
http://httpd.apache.org/docs/2.2/mod/core.html#loglevel
http://httpd.apache.org/docs/2.2/mod/core.html%23errorlog

48 | P a g e

Perform the following to implement the recommended state:

1. Add or modify the LogFormat directives in the Apache configuration to use the
standard and recommended combined format show as shown below.

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-

agent}i\"" combined

2. Add or modify the CustomLog directives in the Apache configuration to use the

combined format with an appropriate log file, syslog facility or piped logging utility.

CustomLog log/access_log combined

3. Add a similar CustomLog directives for each virtual host configured if the virtual host

will have different people responsible for the web site. Each responsible individual
or organization needs access to their own web logs, and needs the
skills/training/tools for monitor the logs.

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify the LogFormat directive in the Apache server configuration has the
recommended information parameters.

2. Verify the CustomLog directive is configured to an appropriate log file, syslog facility,
or piped logging utility and uses the combined format.

3. Verify there is a similar CustomLog directives for each virtual host configured if the
virtual host will have different people responsible for the web site.

Default Value:
The following are the default log configuration:

LogFormat ―%h %l %u %t \‖%r\‖ %>s %b \‖%{Referer}i\‖ \‖%{User-

Agent}i\‖‖ combined

LogFormat ―%h %l %u %t \‖%r\‖ %>s %b‖ common

CustomLog ―logs/access_log‖ common

1.6.3 Log Monitoring (Level 1, Scorable)

Description:
Collecting the Apache logs is an important start, but there must be a monitoring process
that will review the logs for indications of potential attack or abuse. The monitoring
process should be at least on a daily process, and more frequently for high risk
environment or large installations. Log collection and analysis tools are important to
making the monitoring process effective. Some of the most popular and recommended log
monitoring tools include:

49 | P a g e

 LogWatch provides host based log monitoring and is installed by default on many

Linux systems,
 Syslog and syslog-ng provides central collection is very popular and recommended

for medium and larger installations and would feed into a centralized log
monitoring process,

 OSSEC is an open source HIDS which optionally includes log collection and
monitoring and is useful for all size organizations.

At a minimum a processed summary of the web request that resulted in errors (Status
codes 400’s – 599) should be reviewed daily. Detection of other anomalies like spikes in
traffic to specific URL’s and/or from individual IP addresses are also desirable, as common
attack patterns such as password guessing or attempted blind SQL injection may be
detected.

Rationale:
Even with sophisticated tools, log monitoring when done correctly is necessarily one of the
more expensive security controls, as it requires human effort in the review process as well
as investigating of anomalies and handling of incidents. It is a way too common mistake to
underestimate the tremendous value to the organization in proper monitoring, and hence
resources for monitoring are not sufficient and/or the log filtering and anomaly detection
is turned up to the point where attacks and abuse are not detected. Increases in web
application attacks has been one of the primary security trends on this past decade and is
expected to continue for the foreseeable future.

Remediation:
Perform the following to implement the recommended state:

1. Decide on host based log monitoring and/or central log collection, and perform on
either or both of the following:

a. Install suitable host based log monitoring tools such as LogWatch or OSSEC
and configure to send appropriate reports and alerts to an individual or a
team monitoring the logs.

b. Configure Apache to send logs to the syslog daemon and configure syslog to
send to a central collection and monitoring system(s).

2. Develop a log monitoring and incident response process and assign appropriate
staff with the training and system resources to implement.

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify that either:

50 | P a g e

a. A suitable host based log monitoring tools such as LogWatch or OSSEC has
been installed and is configured to send appropriate reports and alerts to an
individual or a team monitoring the logs.

b. Apache is configured to send logs to the syslog daemon and the syslog is
configured to send to another system(s).

2. If possible review the log monitoring and incident response process, to ensure they
are assigned to appropriate staff with sufficient training and resources.

Default Value:
LogWatch is installed by default and it is configured by default to send email to the local
root. However, LogWatch will not monitor the log files of the default source build,
(/usr/local/apache2/logs) unless it is configured. Likewise, OSSEC needs to be
configured to know where the apache logs are found. Syslog is installed by default, but is
not configured to send logs to another host.

References:

1. Logwatch – http://www.logwatch.org/

2. OSSEC HIDS – http://www.ossec.net/

3. Syslog-NG http://www.balabit.com/network-security/syslog-ng/

1.6.4 Log Storage and Rotation (Level 1, Scorable)

Description:
It is important that there is adequate disk space on the partition that will hold all the log
files, and that log rotation is configured to retain at least 3 months or 13 weeks if central
logging is not used for storage.

Rationale:
Keep in mind that the generation of logs is potentially under an attacker’s control. So do not
hold any Apache log files on the root partition of the OS. This could result in a denial of
service against your web server host by filling up the root partition and causing the system
to crash. For this reason it is recommended that the log files should be stored on a
dedicated partition. Likewise consider that attackers sometimes put information into your
logs which is intended to attack your log collection or log analysis processing software. So
it is important that they are not vulnerable. Investigation of incidents often require access
to several months or more of logs, which is why it is important to keep at least 3 months
available. Two common log rotation utilities include rotatelogs(8), which is bundled
with Apache, and logrotate(8), commonly bundled on Linux distributions are described
in the remediation section.

Remediation:
To implement the recommended state do either option a) if using the Linux logrotate
utility or option b) if using a piped logging utility such as the Apache rotatelogs:

http://www.logwatch.org/
http://www.ossec.net/
http://www.balabit.com/network-security/syslog-ng/

51 | P a g e

a) File Logging with Logrotate:

1. Add or modify the web log rotation configuration to match your configured log
files in /etc/logrotate.d/httpd to be similar to the following.

/var/log/httpd/*log {

 missingok

 notifempty

 sharedscripts

 postrotate

 /bin/kill –HUP `cat /var/run/httpd.pid 2>/dev/null` 2>

/dev/null || true

 endscript

}

2. Modify the rotation period and number of logs to keep so that at least 13 weeks

or 3 months of logs are retained. This may be done as the default value for all
logs in /etc/logrotate.conf or in the web specific log rotation configuration in
/etc/logrotate.d/httpd to be similar to the following.

rotate log files weekly

weekly

keep 1 years of backlogs

rotate 52

3. For each virtual host configured with its own log files ensure that those log files

are also included in a similar log rotation.

b) Piped Logging:

1. Configure the log rotation interval and log file names to a suitable interval such
as daily.

CustomLog "|bin/rotatelogs -l /var/logs/logfile.%Y.%m.%d 86400"

combined

2. Ensure the log file naming and any rotation scripts provide for retaining at least
3 months or 13 weeks of log files.

3. For each virtual host configured with its own log files ensure that those log files

are also included in a similar log rotation.

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify the web log rotation configuration matches the Apache configured log files.

52 | P a g e

2. Verify the rotation period and number of logs to retain is at least 13 weeks or 3
months.

3. For each virtual host configured with its own log files ensure that those log files are
also included in a similar log rotation.

Default Value:
The following is the default httpd log rotation configuration in /etc/logrotate.d/httpd:

/var/log/httpd/*log {

 missingok

 notifempty

 sharedscripts

 postrotate

 /bin/kill -HUP `cat /var/run/httpd.pid 2>/dev/null` 2>

/dev/null || true

 endscript

}

The default log retention is configured in /etc/logrotate.conf

rotate log files weekly

weekly

keep 4 weeks worth of backlogs

rotate 4

1.6.5 Monitor Vulnerability Lists (Level 1, Not Scorable)

Description:
Subscribe to an appropriate security advisory list.

Rationale:
One of the most frustrating aspects of web attacks is that most can be prevented if the
appropriate patches are applied. Both OS and web server vendors are constantly issuing
patches in response to flaws found within their application’s code. Keeping abreast of new
patches can be a daunting task to say the least. To keep abreast of issues specific to Apache
software and the operating system platform, the individuals responsible for security
and/or administration of the server should subscribe to a notification service such as those
listed below that will alert them to newly discovered security issues.

Remediation:
Subscribe to one or more of the following to stay abreast of new vulnerabilities.

1. Apache httpd mailing list - http://httpd.apache.org/lists.htmlThe main
announcement mailing list is going to tell you whenever a new release of Apache
comes out and about security fixes but doesn’t usually contain much information

http://httpd.apache.org/lists.html

53 | P a g e

about the actual issues. Serious vulnerabilities tend to get their own advisories
written up which also get posted to the announce list.

2. OS Vendor security lists such as Red Hat
https://www.redhat.com/mailman/listinfo/enterprise-watch-list

3. CERT CC http://www.cert.org/ The Computer Emergency Response Team Co-
ordination Centre monitors security incidents – mostly focused on those that have a
significant impact. CERT advisories are well researched and a good source of
information, especially when CERT was notified of an issue in advance. Not all issues
are notified to CERT so it cannot be relied upon as a sole source of information, and
since CERT deal with issues across all products and operating systems they are not
always able to give immediate updates. Even so, it is well worth subscribing to their
alert lists.

4. Security service provider lists – Many security service providers now provide
security notifications which can be customized to report only on software and
systems that you actual deploy. If you already subscribe to one of these, then be
sure Apache is included in the customization.

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Identify personnel responsible updating the Apache software.

2. Interview responsible personnel with regard to how they find out about
vulnerabilities and security patches available.

Default Value:
Not Applicable.

1.6.6 Apply Applicable Patches (Level 1, Scorable)

Description:
Apply available Apache patches within 1 month of availability.

Rationale:
Knowing about newly discovered vulnerabilities is only part of the solution. There needs
to be a process in place where patches are tested and installed. These patches fix diverse
problems, including security issues.

Important Notice: The Apache 2.2.15 was released March 6, 2010 during the consensus
process for this benchmark and contains security patches for CVE-2010-0425, CVE-2010-
0434 and CVE-2010-0408.

Remediation:
Update to the latest Apache release available according to either of the following:

https://www.redhat.com/mailman/listinfo/enterprise-watch-list
http://www.cert.org/

54 | P a g e

1. When building from source:

a. Read release notes and related security patch information

b. Download latest source and any dependent modules such as mod_security.

c. Build new Apache software according to your build process with the same
configuration options.

d. Install and Test the new software according to your organizations testing
process.

e. Move to production according to your organizations deployment process.

2. When using platform packages such as Red Hat.

a. Read release notes and related security patch information

b. Download and install latest available Apache package and any dependent
software.

yum update httpd

c. Test the new software according to your organizations testing process.

d. Move to production according to your organizations deployment process.

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. When Apache was built from source:

a. Check the Apache web site for latest versions, date of releases and any
security patches. http://httpd.apache.org/security/vulnerabilities_22.html
Apache patches are available http://www.apache.org/dist/httpd/patches/

b. If newer versions with security patches more than 1 month old and are not
installed, then the installation is not sufficiently up-to-date.

2. When using platform packages such as Red Hat.

a. Check for vendor supplied updates such as the yum repository or the vendor
web site such as https://www.redhat.com/security/updates/.

yum check-update httpd

http://httpd.apache.org/security/vulnerabilities_22.html
http://www.apache.org/dist/httpd/patches/
https://www.redhat.com/security/updates/

55 | P a g e

b. If newer versions with security patches more than 1 month old are not
installed, then the installation is not sufficiently up-to-date.

Default Value:
Not Applicable

References:

1. Apache vulnerabilities http://httpd.apache.org/security/vulnerabilities_22.html

2. Red Hat Network http://rhn.redhat.com/

3. Red Hat Security Updates https://www.redhat.com/security/updates/

1.7 Use SSL / TLS

1.7.1 Install mod_ssl and/or mod_nss (Level 1, Scorable)

Description:
Secure Sockets Layer (SSL) was developed by Netscape and turned into an open standard,
and was renamed Transport Layer Security (TLS) as part of the process. TLS is important
for protecting communication and can provide authentication of the server and even the
client. However contrary to vendor claims, implementing SSL does NOT directly make your
web server more secure! SSL is used to encrypt traffic and therefore does provide
confidentiality of private information and users credentials. However, just because you
have encrypted the data in transit does not mean that the data provided by the client is
secure while it is on the server. Also, SSL does not protect the web server, as attackers will
easily target SSL-Enabled web servers, and the attack will be hidden in the encrypted
channel. The mod_ssl module is the standard, most used module that implements SSL/TLS
for Apache. A newer module found on Red Hat systems can be a compliment or
replacement for mod_ssl, and provides the same functionality plus additional security
services. The mod_nss is an Apache module implementation of the Network Security
Services (NSS) software from Mozilla, which implements a wide range of cryptographic
functions in addition to TLS.

Rationale:
It is best to plan for SSL/TLS implementation from the beginning of any new web server. As
most web servers have some need for SSL/TLS due to:

 non-public information submitted that should be protected as it’s transmitted to the
web server.

 non-public information that is downloaded from the web server.
 users are going to be authenticated to some portion of the web server
 there is a need to authenticate the web server to ensure users that they have

reached the real web server, and have not been phished or redirected to a bogus
site.

Remediation:
Perform either of the following to implement the recommended state:

http://httpd.apache.org/security/vulnerabilities_22.html
http://rhn.redhat.com/
https://www.redhat.com/security/updates/

56 | P a g e

1. For Apache installations built from the source, use the --enable-ssl configure

option to add the SSL modules to the build. The --with-included-apr configure
option may be necessary if there are conflicts with the platform version. See the
Apache documentation on building from source
http://httpd.apache.org/docs/2.2/install.html for details.

./configure --with-included-apr --enable-ssl

2. For installations using OS packages, it is typically just a matter of ensuring the

mod_ssl package is installed. The mod_nss package might also be installed. The
following yum commands are suitable for Red Hat Linux.

yum install mod_ssl

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Ensure the mod_ssl and/or mod_nss is loaded in the Apache configuration:

httpd -M | egrep 'ssl_module|nss_module'

Results should show “Syntax OK” along with either or both of the modules.

Default Value:
The SSL is not enabled by default.

References:

1. Mod_SSL http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

2. Mod_NSS http://directory.fedoraproject.org/wiki/Mod_nss

3. NSS http://www.mozilla.org/projects/security/pki/nss/

1.7.2 Install a valid trusted certificate (Level 1, Scorable)

Description:
The default SSL certificate is self-signed and is not trusted. Install a valid certificate signed
by a commonly trusted certificate authority. To be valid, the certificate must be

 Signed by a trusted certificate authority
 not be expired, and
 have a common name that matches the host name of the web server, such as

www.example.com.

Rationale:
A digital certificate on your server automatically communicates your site's authenticity to
visitors' web browsers. If a trusted authority signs your certificate, it confirms for the

http://httpd.apache.org/docs/2.2/install.html
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html
http://directory.fedoraproject.org/wiki/Mod_nss
http://www.mozilla.org/projects/security/pki/nss/

57 | P a g e

visitor they are actually communicating with you, and not with a fraudulent site stealing
credit card numbers or personal information.

Remediation:
Perform the following to implement the recommended state:

1. Decide on the host name to be used for the certificate. It is important to remember
that the browser will compare the host name in the URL to the common name in the
certificate, so that it is important that all https: URL’s match the correct host name.
Specifically the host name www.example.com is neither the same as example.com nor
the same as ssl.example.com.

2. Generate a private key using OpenSSL. Although certificate key lengths of 1024
have been common in the past, a key length of 2048 is now recommended for strong
authentication. The key must be kept confidential and will be encrypted with a
passphrase by default. Follow the steps below and respond to the prompts for a
passphrase. See the Apache or OpenSSL documentation for details:

http://httpd.apache.org/docs/2.2/ssl/ssl_faq.html#realcert
http://www.openssl.org/docs/HOWTO/certificates.txt

cd /etc/pki/tls/certs

umask 077

openssl genrsa -aes128 2048 > example.com.key

Generating RSA private key, 2048 bit long modulus

...+++

............+++

e is 65537 (0x10001)

Enter pass phrase:

Verifying - Enter pass phrase:

3. Generate the certificate signing request (CSR) to be signed by a certificate authority.

It is important that common name exactly make the web host name.

openssl req -utf8 -new -key example.com.key -out www.example.com.csr

Enter pass phrase for example.com.key:

You are about to be asked to enter information that will be

incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a

DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:New York

Locality Name (eg, city) [Newbury]:Lima

http://httpd.apache.org/docs/2.2/ssl/ssl_faq.html#realcert
http://www.openssl.org/docs/HOWTO/certificates.txt

58 | P a g e

Organization Name (eg, company) [My Company Ltd]:Durkee Consulting

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname)

[]:www.example.com

Email Address []:ralph@example.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

mv www.example.com.key /etc/pki/tls/private/

4. Send the certificate signing request (CSR) to a certificate signing authority to be

signed, and follow their instructions for submission and validation. The CSR and the
final signed certificate are just encoded text, and need to be protected for integrity,
but not confidentiality. This certificate will be given out for every SSL connection
made.

5. The resulting signed certificate may be named www.example.com.crt and placed in
/etc/pki/tls/certs/ as readable by all (mode 0444). Please note that the
certificate authority does not need the private key (example.com.key) and this file
must be carefully protected. With a decrypted copy of the private key, it would be
possible to decrypt all conversations with the server.

6. Do not forget the passphrase used to encrypt the private key. It will be required
every time the server is started in https mode. If it is necessary to avoid requiring
an administrator having to type the passphrase every time the httpd service is
started, the private key may be stored in clear text. Storing the private key in clear
text increases the convenience while increasing the risk of disclosure of the key, but
may be appropriate for the sake of being able to restart, if the risks are well
managed. Be sure that the key file is only readable by root. To decrypt the private
key and store it in clear text file the following openssl command may be used. You
can tell by the private key headers whether it is encrypted or clear text.

cd /etc/pki/tls/private/

umask 077

openssl rsa -in example.com.key -out example.com.key.clear

7. Locate the Apache configuration file for mod_ssl and add or modify the

SSLCertificateFile and SSLCertificateKeyFile directives to have the correct
path for the private key and signed certificate files. If a clear text key is referenced
then a passphrase will not be required. You can use the CA’s certificate that signed
your certificate instead of the CA bundle, to speed up the initial SSL connection as
fewer certificates will need to be transmitted.

SSLCertificateFile /etc/pki/tls/certs/example.com.crt

SSLCertificateKeyFile /etc/pki/tls/private/example.com.key

59 | P a g e

Default CA file, can be replaced with your CA's certificate.

SSLCACertificateFile /etc/pki/tls/certs/ca-bundle.crt

8. Lastly, start or restart the httpd service and verify correct functioning with your

favorite browser.

Audit:
Perform either or both of the following steps to determine if the recommended state is
implemented:

1. OpenSSL can also be used to validate a certificate as a valid trusted certificate, using
a trusted bundle of CA certificate. It is important that the CA bundle of certificates
be an already validated and trusted file in order for the test to be valid.

$ openssl verify -CAfile /etc/pki/tls/certs/ca-bundle.crt -purpose

sslserver /etc/pki/tls/certs/example.com.crt

/etc/pki/tls/certs/example.com.crt: OK

A specific error message and code will be reported in addition to the OK if the
certificate is not valid, For example:

error 10 at 0 depth lookup:certificate has expired

OK

2. Testing can also be done by connecting to a running web server. This may be done
with your favorite browser, a command line web client or with openssl s_client. Of
course it is important here as well to be sure of the integrity of the trusted
certificate authorities used by the web client. Check out the OWASP testing SSL web
page for additional suggestions:

http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29

Default Value:
Default is an invalid self-signed certificate.

References:

1. OWASP SSL Testing http://www.owasp.org/index.php/Testing_for_SSL-
TLS_%28OWASP-CM-001%29

2. SSL FAQ http://httpd.apache.org/docs/2.2/ssl/ssl_faq.html#realcert

3. OpenSSL How-to http://www.openssl.org/docs/HOWTO/certificates.txt

4. NIST Special Publication 800-52 http://csrc.nist.gov/publications/nistpubs/800-
52/SP800-52.pdf

http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
http://httpd.apache.org/docs/2.2/ssl/ssl_faq.html#realcert
http://www.openssl.org/docs/HOWTO/certificates.txt
http://csrc.nist.gov/publications/nistpubs/800-52/SP800-52.pdf
http://csrc.nist.gov/publications/nistpubs/800-52/SP800-52.pdf

60 | P a g e

1.7.3 Protect the Servers Private Key (Level 1, Scorable)

Description:
It is critical to protect the server’s private key. The server private key is be encrypted by
default as a means of protecting it, however having it encrypted means that the passphrase
is required each time the server is started up, and now it is necessary to protect the
passphrase as well. The passphrase may be typed into when it is manually started up, or
provided by an automated program. See
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslpassphrasedialog for details. To
summarize, the options are:

a) Use SSLPassPhraseDialog builtin to require a passphrase be manually entered.
b) Use SSLPassPhraseDialog |/path/to/program to provide the passphrase.
c) Use SSLPassPhraseDialog exec:/path/to/program to provide the passphrase,
d) Store the private key in clear text so that a passphrase is not required.

Any of the above options are acceptable for as long as the key and passphrase are protected
as described below. Option a) has the additional security benefit of not storing the
passphrase, but is not generally acceptable for most production web servers, since it
requires the web server to be manually started. Options b) and c) can provide additional
security if the programs providing them are secure. Option d) is the simplest, is widely
used and is acceptable as long as the private key is appropriately protected.

Rationale:
If the private key were to be disclosed, it could be used to decrypt all of the SSL
communications with the web server, and could also be used to impersonate the web
server.

Remediation:
Perform the following to implement the recommended state:

1. All private keys must be stored separately from the public certificates. Find all
SSLCertificateFile directives in the Apache configuration files. For any
SSLCertificateFile directives that does not have a corresponding separate
SSLCertificateKeyFile directive, move the key to a separate file from the
certificate, and add the SSLCertificateKeyFile directive for the key file.

2. For each the SSLCertificateKeyFile directives, change the ownership and
permissions on the server’s private key to be owned by root:root with permission
0400.

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. For each certificate file referenced in the Apache configuration files with the
SSLCertificateFile directive, examine the file for a private key, clearly identified
by the sting “PRIVATE KEY—--“

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html%23sslpassphrasedialog

61 | P a g e

2. For each file referenced in the Apache configuration files with the
SSLCertificateKeyFile directive, verify the ownership is root:root and the
permission 0400.

 Default Value:
Not applicable.

References:

1. Apache SSL Module http://httpd.apache.org/docs/2.2/mod/mod_ssl.html

2. SSLPassphraseDialog
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslpassphrasedialog

1.7.4 Restrict weak SSL Protocols and Ciphers (Level 1, Scorable)

Description:
Disable weak SSL protocols and weak ciphers using the SSLProtocol and SSLCipherSuite
directives.

Rationale:
The SSLv2 protocol is flawed and shouldn’t be used, as it is subject to man-in-the-middle
attacks and other cryptographic attacks. The SSLv3 and TLSv1 protocols should be used
instead.

IMPORTANT NOTICE: There is also a fairly recent (Nov 2009) man-in-the-middle
renegotiation attack discovered in SSLv3 and TLSv1.
http://www.phonefactor.com/sslgap/ssl-tls-authentication-patches First a work around and
then a fix has been made recently approved as an Internet Standard as RFC 574, Feb 2010.
The work around which removes the renegotiation is available from OpenSSL as version 0.9.8l
and 0.9.8m is the current version for the fix at the time of this publication. Test and upgrade
to one of these versions when it’s available for your platform or download the source from
openssl.org. http://www.openssl.org/news/secadv_20091111.txt

Remediation:
Perform the following to implement the recommended state:

1. Add or modify the following line in the Apache server level configuration and every
virtual host that is SSL enabled:

SSLProtocol all -SSLv2

2. Add or modify the following line in the Apache server level configuration and every

virtual host that is SSL enabled:

SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW:!SSLv2

FIPS Compliance: For servers that fall under FIPS 140-2 compliance requirements, SP800-
52 provides guidelines for the TLS ciphers. To eliminate usage of the RC4 cipher and MD5

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html%23sslpassphrasedialog
http://www.phonefactor.com/sslgap/ssl-tls-authentication-patches
http://www.openssl.org/news/secadv_20091111.txt

62 | P a g e

hash which are not deemed FIPS compliant, therefore the cipher suite should disallow MD5
and RC4. Such as:

enable only FIPS 140-2 compliant cyphers

SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW:!SSLv2:!MD5:!RC4

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify the SSLProtocol directive disables SSLv2 is present in the Apache server
level configuration and every virtual host that is SSL enabled. Also verify the
SSLCipherSuite directive disables weak ciphers in the Apache server level
configuration and every virtual host that is SSL enabled.

2. Alternately the SSL protocols and ciphers supported can be easily tested by
connecting to a running web server with openssl s_client such as shown in
http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29

Default Value:
The following are the default modules loaded:

References:

1. SSLProtocol http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslprotocol

2. SSLCipherSuite
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslciphersuite

3. OpenSSL http://www.openssl.org/

4. Testing SSL http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-
CM-001%29

1.7.5 Restrict Insecure SSL Renegotiation (Level 1, Scorable)

Description:
There is a somewhat recent (Nov 2009) man-in-the-middle renegotiation attack discovered
in SSLv3 and TLSv1. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555
http://www.phonefactor.com/sslgap/ssl-tls-authentication-patches First a work around
and then a fix has been made recently approved as an Internet Standard as RFC 574, Feb
2010. The work around which removes the renegotiation is available from OpenSSL as
version 0.9.8l and 0.9.8m is the current version for the fix at the time of this publication.
Test and upgrade to one of these versions when it’s available for your platform, or
download the source from openssl.org.
http://www.openssl.org/news/secadv_20091111.txt

The SSLInsecureRenegotiation directive was recently added in Apache 2.2.15 for web
servers linked with OpenSSL version 0.9.8m or later, to allow the insecure renegotiation to
provide backward compatibility to clients with the older unpatched SSL implementations.

http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslprotocol
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslciphersuite
http://www.openssl.org/
http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
http://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555
http://www.phonefactor.com/sslgap/ssl-tls-authentication-patches
http://www.openssl.org/news/secadv_20091111.txt

63 | P a g e

While providing backward compatibility, enabling the SSLInsecureRenegotiation
directive also leaves the server vulnerable to man-in-the-middle renegotiation attack CVE-
2009-3555. Therefore the SSLInsecureRenegotiation directive should not be enabled.

Rationale:
The seriousness and ramification of this attack warrant that servers and clients be
upgraded to support the improved SSL/TLS protocols. Therefore the recommendation is to
not enable the insecure renegotiation.

Remediation:
Perform the following to implement the recommended state:

1. Search the Apache configuration files for the SSLInsecureRenegotiation directive.
If the directive is present modify the value to be off. If the directive is not present
then no action is required.

SSLInsecureRenegotiation off

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Search the Apache configuration files for the SSLInsecureRenegotiation directive
and verify that the directive is either not present or has a value of off.

Default Value:
The default value is off:

SSLInsecureRenegotiation off

References:

1. SSLInsecureRenegotiation directive
http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslinsecurerenegotiation

2. Cert CVE http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

1.8 Information Leakage

1.8.1 Limit Information in the Server Token (Level 1, Scorable)

Description:
Configure the Apache ServerTokens directive to provide minimal information. This is
accomplished by setting the value to Prod or ProductOnly. The only version information
given in the server HTTP response header will be “Apache” rather than providing detailed
on modules and versions installed,

Rationale:
Information is power, and identifying web server details greatly increases the efficiency of
any attack, as security vulnerabilities are extremely dependent upon specific software

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html#sslinsecurerenegotiation
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

64 | P a g e

versions and configurations. Excessive probing and requests may cause too much "noise"
being generated and may tip off an administrator. If an attacker can accurately target their
exploits, the chances of successful compromise prior to detection increase dramatically.
Script Kiddies are constantly scanning the Internet and documenting the version
information openly provided by web servers. The purpose of this scanning is to accumulate
a database of software installed on those hosts, which can then be used when new
vulnerabilities are released.

Remediation:
Perform the following to implement the recommended state:

1. Add or modify the ServerTokens directive as shown below to have the value of Prod
or ProductOnly:

ServerTokens Prod

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify the ServerTokens directive is present in the apache configuration and has a
value of Prod or ProductOnly.

Default Value:
The default value is Full which provides the most detailed information.

ServerTokens Full

Sample Server Header:

 Server: Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.8e-fips-rhel5

References:

1. ServerTokens http://httpd.apache.org/docs/2.2/mod/core.html#servertokens

1.8.2 Limit Information in the Server Signature (Level 1, Scorable)

Description:
Disable the server signatures which generate a signature line as a trailing footer at the
bottom of server generated documents such as error pages.

Rationale:
Server signatures are helpful when the server is acting as a proxy, since it helps the user
distinguish errors from the proxy rather than the destination server, however in this
context there is no need for the additional information and we want to limit leakage of
unnecessary information.

Remediation:
Perform the following to implement the recommended state:

http://httpd.apache.org/docs/2.2/mod/core.html%23servertokens

65 | P a g e

1. Add or modify the ServerSignature directive as shown below to have the value of

Off:

ServerSignature Off

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify the ServerSignature directive is either NOT present in the apache
configuration or has a value of Off:

Default Value:
The default value is Off for ServerSignature.

References:

1. ServerSignature
http://httpd.apache.org/docs/2.2/mod/core.html#serversignature

1.8.3 Information Leakage via Default Apache Content (Level 2, Scorable)

Description:
In previous recommendations we have removed default content such as the Apache
manuals and default CGI programs. However if you want to further restrict information
leakage about the web server, it is important that default content such as icons are left on
the web server.

Rationale:
To identify the type of web servers and versions software installed it is common for
attackers to scan for icons or special content specific to the server type and version. A
simple request like http://example.com/icons/apache_pb2.png may tell the attacker that
the server is Apache 2.2 as shown below. The many icons are used primary for auto
indexing, which is recommended to be disabled.

Remediation:
Perform either of the following to implement the recommended state:

1. The default source build places the auto-index and icon configurations in the
extra/httpd-autoindex.conf file, so it can be disabled by leaving the include line
commented out in the main httpd.conf file as shown below.

Fancy directory listings

#Include conf/extra/httpd-autoindex.conf

http://httpd.apache.org/docs/2.2/mod/core.html%23serversignature
http://example.com/icons/apache_pb2.png

66 | P a g e

2. Alternatively the icon alias directive and the directory access control configuration
can be commented out as shown:

We include the /icons/ alias for FancyIndexed directory listings. If

you do not use FancyIndexing, you may comment this out.

#Alias /icons/ "/var/www/icons/"

#<Directory "/var/www/icons">

Options Indexes MultiViews FollowSymLinks

AllowOverride None

Order allow,deny

Allow from all

#</Directory>

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify that there is no alias or directory access to the apache icons directory in any
of the Apache configuration files.

Default Value:
The default source build does not enable access to the Apache icons.

1.9 Miscellaneous Configuration Settings

1.9.1 Denial of Service Mitigation (Level 1, Scorable)

Description:
Denial of Service (DoS) is an attack technique with the intent of preventing a web site from
serving normal user activity. DoS attacks, which are normally applied to the network layer,
are also possible at the application layer. These malicious attacks can succeed by starving a
system of critical resources, vulnerability exploit, or abuse of functionality. Although there
is no 100% solution for preventing DoS attacks, the following recommendations use the
Timeout, KeepAlive, and KeepAliveTimeout directives to mitigate some of the risk, by
requiring more effort for a successful DoS attack. Of course DoS attacks can happen in
rather unintentional ways as well as intentional and these directives will help in many of
those situations as well.

Rationale:
One common technique for DoS is to initiate many connections to the server. By decreasing
the timeout for old connections and we allow the server to free up resources more quickly
and be more responsive. In addition we will enable KeepAlives which allows for multiple
HTTP requests to be sent while keeping the same TCP connection alive. This reduces the
overhead of having to setup and tear down new TCP connections. By making the server
more efficient will be more resilient to DoS conditions. The Timeout directive affects
several timeout values for Apache, so review the Apache document carefully.
http://httpd.apache.org/docs/2.2/mod/core.html#timeout

http://httpd.apache.org/docs/2.2/mod/core.html#timeout

67 | P a g e

Important Notice: There is a slow form of DoS attack not adequately mitigated by these

control, such as the Slow Loris DoS attack of June 2009 http://ha.ckers.org/slowloris/

A new module mod_reqtimeout has been introduced in the recent 2.2.15 release, to provide

tools for mitigating these forms of attack; however the module is marked experimental at this

time. http://httpd.apache.org/docs/2.2/mod/mod_reqtimeout.html

Remediation:
Perform the following to implement the recommended state:

1. Add or modify the Timeout directive in the Apache configuration to have a value of
10 seconds or shorter.

Timeout 10

2. Add or modify the KeepAlive directive in the Apache configuration to have a value

of On, so that KeepAlive connections are enabled.

KeepAlive On

3. Add or modify the MaxKeepAliveRequests directive in the Apache configuration to

have a value of 100 or more.

MaxKeepAliveRequests 100

4. Add or modify the KeepAliveTimeout directive in the Apache configuration to have

a value of 15 or less.

KeepAliveTimeout 15

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify that the Timeout directive is specified in the Apache configuration files to
have a value of 30 seconds or shorter.

2. Verify that the KeepAlive directive in the Apache configuration to have a value of On,
or is not present. If the directive is not present the default value is On.

3. Verify that the MaxKeepAliveRequests directive in the Apache configuration to have
a value of 100 or more. If the directive is not present the default value is 100.

4. Verify that the KeepAliveTimeout directive in the Apache configuration to have a
value of 15 or less. . If the directive is not present the default value is 15 seconds.

Default Value:
The following are the default values for each directive:

http://ha.ckers.org/slowloris/
http://httpd.apache.org/docs/2.2/mod/mod_reqtimeout.html

68 | P a g e

Timeout 300

KeepAlive On

MaxKeepAliveRequests 100

KeepAliveTimeout 15

References:

1. Timeout http://httpd.apache.org/docs/2.2/mod/core.html#timeout

2. KeepAlive http://httpd.apache.org/docs/2.2/mod/core.html#keepalive

3. KeepAliveTimeout
http://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout

4. MaxKeepAliveRequests
http://httpd.apache.org/docs/2.2/mod/core.html#maxkeepaliverequests

1.9.2 Buffer Overflow Mitigation (Level 2, Scorable)

Description:
Buffer Overflow attacks attempt to exploit an application by providing more data than the
application buffer can contain. If the application allows copying data to the buffer to
overflow the boundaries of the buffer, then the application is vulnerable to a buffer
overflow. The results of Buffer overflow vulnerabilities varies, and may result in the
application crashing, or may allow the attacker to execute instructions provided in the data.
The Apache LimitRequest* directives allow the Apache web server to limit the sizes of
requests and request fields and can be used to help protect programs and applications
processing those requests.

Rationale:
The limiting the sizes of requests is helpful so that the web server can prevent an
unexpectedly long or large requests from being passed to a potentially vulnerable CGI
program, module or application that would have attempted to process the request. Of
course the underlying dependency is that we need to set the limits high enough to not
interfere with any one application on the server, while setting them low enough to be of
value in protecting the applications. Since the configuration directives are available only at
the server configuration level, it is not possible to tune the value for different portions of
the same web server. Please read the Apache documentation carefully, as these requests
may interfere with the expected functionality of some web applications

Remediation:
Perform the following to implement the recommended state:

1. Add or modify the LimitRequestline directive in the Apache configuration to have a
value less than or equal to 512.

LimitRequestline 512

http://httpd.apache.org/docs/2.2/mod/core.html#timeout
http://httpd.apache.org/docs/2.2/mod/core.html#keepalive
http://httpd.apache.org/docs/2.2/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/2.2/mod/core.html%23maxkeepaliverequests

69 | P a g e

2. Add or modify the LimitRequestFields directive in the Apache configuration to
have a value of 100 or less. If the directive is not present the default depends on a
compile time configuration, but defaults to a value of 100.

LimitRequestFields 100

3. Add or modify the LimitRequestFieldsize directive in the Apache configuration to

have a value of 1024 or less.

LimitRequestFieldsize 1024

4. Add or modify the LimitRequestBody directive in the Apache configuration to have a

value of 102400 (100K) or less. Please read the Apache documentation so that it is
understood that this directive will limit the size of file up-loads to the web server.

LimitRequestBody 102400

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify that the LimitRequestline directive is in the Apache configuration and has a
value of 512 or less.

2. Verify that the LimitRequestFields directive is in the Apache configuration and has
a value of 100 or less.

3. Verify that the LimitRequestFieldsize directive is in the Apache configuration and
has a value of 1024 or less.

4. Verify that the LimitRequestBody directive in the Apache configuration to have a
value of 102400 (100K) or less.

Default Value:
The following are the default values:

LimitRequestline 8190

LimitRequestFields 100

LimitRequestFieldsize 8190

LimitRequestBody 0 (unlimited)

References:

1. LimitRequestline
http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestline

2. LimitRequestFields
http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestfields

http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestline
http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestfields

70 | P a g e

3. LimitRequestFieldsize
http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestfieldsize

4. LimitRequestBody
http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestbody

1.9.3 Restrict Listen Directive (Level 2, Scorable)

Description:
The Apache Listen directive specifies the IP addresses and port numbers the Apache web
server will listen for requests. Rather than be unrestricted to listen on all IP addresses
available to the system, the specific IP address or addresses intended should be explicitly
specified. Specifically a Listen directive with no IP address specified, or with an IP address
of zero’s should not be used.

Rationale:
Having multiple interfaces on web servers is fairly common, and without explicit Listen
directives, the web server is likely to be listening on an inappropriate IP address / interface
that was not intended for the web server. Single homed system with a single IP addressed
are also required to have an explicit IP address in the Listen directive, in case additional
interfaces are added to the system at a later date.

Remediation:
Perform the following to implement the recommended state:

1. Find any Listen directives in the Apache configuration file with no IP address
specified, or with an IP address of all zero’s similar to the examples below. Keep in
mind there may be both IPv4 and IPv6 addresses on the system.

Listen 80

Listen 0.0.0.0:80

Listen [::ffff:0.0.0.0]:80

2. Modify the Listen directives in the Apache configuration file to have explicit IP

addresses according to the intended usage. Multiple Listen directives may be
specified for each IP address & Port.

Listen 10.1.2.3:80

Listen 192.168.4.5:80

Listen [2001:db8::a00:20ff:fea7:ccea]:80

Audit:
Perform the following steps to determine if the recommended state is implemented:

1. Verify that no Listen directives are in the Apache configuration file with no IP
address specified, or with an IP address of all zero’s.

Default Value:

http://httpd.apache.org/docs/2.2/mod/core.html#limitrequestfieldsize
http://httpd.apache.org/docs/2.2/mod/core.html%23limitrequestbody

71 | P a g e

The following is the default value:

Listen 80

References:

1. Listen Directive http://httpd.apache.org/docs/2.2/mod/mpm_common.html#listen

http://httpd.apache.org/docs/2.2/mod/mpm_common.html#listen

72 | P a g e

Appendix A: References

1. Apache Software Foundation (2009). Apache HTTP Server Version 2.2 Documentation.

Available http://httpd.apache.org/docs/2.2/ Last accessed Feb 2010.

2. National Institute of Standards and Technology. (2009). Checklist Details for Web Apache

Checklist Version 6, Release 1.11. Available:

http://web.nvd.nist.gov/view/ncp/repository/checklistDetail?id=94. Last accessed Feb 2010.

http://httpd.apache.org/docs/2.2/
http://web.nvd.nist.gov/view/ncp/repository/checklistDetail?id=94

73 | P a g e

Appendix B: Further Reading

1. The Apache ChrootDir Directive provides a means to restrict access for the web server
running as the apache user by either running the web server in a chroot “jailed”
environment and would have been included, except that it is still fairly new, and not yet
widely used in production environment. Adding the directive should be considered for
future updates. Document is available
http://httpd.apache.org/docs/2.2/mod/mpm_common.html#chrootdir

2. A good alternative chroot solution is the mod_security chroot approach which is
commonly used, but will now be covered as a separate benchmark. With
documentation available http://www.modsecurity.org/documentation/apache-
internal-chroot.html

3. A second alternative to the ChrootDir considered was the SELinux which takes a
different approach to implement similar restrictions through mandatory access
controls and is commonly used, but not a native part of Apache. Additional information
can be found here:

a. Main Project http://selinuxproject.org/
b. Fedora http://fedoraproject.org/wiki/SELinux
c. RHEL5 http://www.redhat.com/docs/manuals/enterprise/RHEL-5-

manual/Deployment_Guide-en-US/ch-selinux.html
d. Debian http://wiki.debian.org/SELinux
e. Gentoo www.gentoo.org/proj/en/hardened/selinux/

http://httpd.apache.org/docs/2.2/mod/mpm_common.html#chrootdir
http://www.modsecurity.org/documentation/apache-internal-chroot.html
http://www.modsecurity.org/documentation/apache-internal-chroot.html
http://selinuxproject.org/
http://fedoraproject.org/wiki/SELinux
http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Deployment_Guide-en-US/ch-selinux.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Deployment_Guide-en-US/ch-selinux.html
http://wiki.debian.org/SELinux
file:///C:/Users/blake/AppData/Local/Temp/www.gentoo.org/proj/en/hardened/selinux/

74 | P a g e

Appendix C: DISA Web SRR Checklist Mapping
The following table maps the requirements articulated in
SEC_5_Apache_2_x_Instance_V6R1.11.pdf as obtained from References [2]

 Item DISA CIS
Timeout WA000-WWA020 (300 or less) 1.9.1 (10 or less)

KeepAlive WA000-WWA022 (On) 1.9.1 (On)
KeepAliveTimeout WA000-WWA024 (15 or less) 1.9.1 (15 or less)

StartServers WA000-WWA026 (Between 5 and 10) NA

MinSpareServers WA000-WWA028 (Between 5 and 10) NA
MaxSpareServers WA000-WWA030 (10 or less) NA

MaxClients WA000-WWA032 (256 or less) NA
Restrict ExecCGI WA000-WWA050 1.5.3

Restrict FollowSymLinks WA000-WWA052 1.5.3
Restrict IncludesNOEXEC WA000-WWA054 1.5.3

Restrict MultiViews WA000-WWA056 1.5.3

Restrict Indexes WA000-WWA058 1.5.3
LimitRequestBody WA000-WWA060 (Not 0) 1.9.2 (102400 or less)

LimitRequestFields WA000-WWA062 (Not 0) 1.9.2 (100 or less)
LimitRequestFieldsize WA000-WWA064 (8190 or less) 1.9.2 (1024 or less)

LimitRequestline WA000-WWA066 (8190 or less) 1.9.2 (512 or less)
Trained Staff WA050 NA

Public Server Isolation WA060 NA

Private Server Isolation WA070 NA
Log Archive WA110 1.6.1-1.6.4

User/Group Documentation WA120 NA
Configuration Backup WA140 NA

Physically Secure Classified Systems WA155 NA
Base OS Not Secured WA160 NA

Incident Response Procedure WA170 NA

Software Upgrade Plan WA200 NA
Patch Apache WA230 1.6.6

Public/Private Server Connection WG040 NA

Web admin has service password WG050 NA

Change web service password annually WG060 NA
Remove Compilers WG080 NA

Remove unneeded programs WG130 NA

Remove unneeded services WG135 1.1.2
Use DoD certificate validation WG145 1.7.2,1.7.3

Unsupported Apache Version WG190 1.1.3
Only Administrators Have Shell Access WG200 NA

Single Use System WG204 1.1.2

75 | P a g e

Only Admins Access Web Administration WG220 NA

Anti Virus Used for Uploads WG237 NA
Secure .htpasswd Files WG270 1.5.9

Run as non-privileged account WG275 1.3.1

Configuration file ownership WG280 1.3.4
Configuration file permissions WG300 1.3.5

Disable external mail facilities WG330 1.1.2
Server’s Trusted Roots link to DoD CA WG335 NA

Remove handlers for CSH and SH WG370 NA
Remove Vulnerable Programs WG380 NA

Remove Sample Code and Docs WG385 1.5.4,1.5.5

Remove Backup Files WG420 1.5.10

CGIs are Monitored WG440 NA

Users Access Win32 Scripting Hosts WG470 NA
Web Server or OS Information Leaked WG520 1.8.1-1.8.3

Limit AuthN and AuthZ Modules NA 1.2.1
Enable Log Config Module NA 1.2.2

Disable WebDAV Modules NA 1.2.3

Disable Status and Info Modules NA 1.2.4
Disable Autoindex Module NA 1.2.5

Disable Proxy Modules NA 1.2.6
Disable Userdir Module NA 1.2.7

Invalidate Apache User’s Shell NA 1.3.2

Lock Apache User NA 1.3.3

Secure Core Dumps NA 1.3.6

Secure LockFile NA 1.3.7
Secure PidFile NA 1.3.8

Secure ScoreBoardFile NA 1.3.9
Protect OS Root NA 1.4.1

Restrict Overrides for OS Root NA 1.4.3
Restrict Directory Overrides NA 1.4.4

Restrict Options for OS Root NA 1.5.1

Restrict Options for Web Root NA 1.5.2
Minimize Options for other Directories NA 1.5.3

Limit HTTP Request Methods NA 1.5.6
Disable HTTP Trace Method NA 1.5.7

Restrict HTTP Protocol Version NA 1.5.8
Restrict File Extensions NA 1.5.10

Restrict weak SSL Protocols and Ciphers NA 1.7.4

Restrict Insecure SSL Renegotiation NA 1.7.5
Restrict Listen Directive NA 1.9.3

76 | P a g e

Appendix D: Change History
Date Version Changes for this version

May 17th, 2010 3.0.0 Release Major Update with new format with Auditable items
by Ralph Durkee

Summary of Changes:
New Items:

 1.1.2 Do not Install on a Multi-use System (Level 2,
Not Scorable)

 1.2.1 Enable only necessary Authentication and
Authorization Modules (Level 1, Scorable)

 1.2.2 Enable the Log Config Module (Level 1,
Scorable)

 1.2.3 Disable WebDAV modules (Level 1, Scorable)
 1.2.4 Disable Status and Info modules (Level 1,

Scorable)
 1.2.5 Disable Autoindex module (Level 1, Scorable)
 1.2.6 Disable Proxy Modules (Level 1, Scorable)
 1.3.3 Lock the Apache User Account (Level 1,

Scorable)
 1.3.6 Core Dump Directory Security (Level 1, Scorable)
 1.3.7 Lock File Security (Level 1, Scorable)
 1.3.8 Pid File Security (Level 1, Scorable)
 1.3.9 ScoreBoard File Security (Level 1, Scorable)
 1.4.4 Restrict OverRide for All Directories (Level 1,

Scorable)
 1.5.1 Restrict Options for the OS Root Directory

(Level 1, Scorable)
 1.5.7 Disable HTTP TRACE Method (Level 1,

Scorable)
 1.5.9 Restrict Access to .ht* files (Level 1, Scorable)
 1.6.3 Log Monitoring (Level 1, Scorable)
 1.7.3 Protect the Servers Private Key (Level 1,

Scorable)
 1.7.5 Restrict Insecure SSL Renegotiation (Level 1,

Scorable)
 1.8.3 Information Leakage via Default Apache

Content (Level 2, Scorable)
 1.9.3 Restrict Listen Directive (Level 2, Scorable)

Removed Content:
 Usage of mod_security is moved to a separate

benchmark
 2.2 Mod_log_Forensic
 2.3 Denial of Service and Brute Force Identification and

77 | P a g e

Response
 2.4 Buffer Overflow Protection Tuning
 2.6 Virtual Patching with ModSecurity
 2.7 Additional Software Information Leakage

Protection
Major Changes:

2. Mod_Security alternate implementation for 1.5.6 Limit
HTTP Request Methods and 1.5.10 Restrict File
Extensions (Level 2, Scorable) and chroot are not
included.

October, 2008 2.2.0  Updated 1.19 to refer to /usr/local/apache2 instead of
/usr/local/apache.

 Updated 2.1 to refer to /usr/local/apache2 instead of
/usr/local/apache.

 Updated 2.2 to refer to /usr/local/apache2 instead of
/usr/local/apache.

 Updated 2.5 to refer to /usr/local/apache2 instead of
/usr/local/apache.

 Formatted inline ‘verbatim’ text for readability.
 Added new cover page, Change History, and TOU.
 Added footer with page numbers
 Updated 1.14 example to match explanation text.
 Updated 1.17 example to reference /var/log/httpd for

logging. This aligns with the recommendation to log off
the server root.

 Updated 1.21 to state users should use the update
mechanism provided by their OS to update Apache.

 Updated 1.15 ssl config to reference /var/log/httpd for
logging location vie logs/.

 Updated 1.15 to disallow SSLv2 Ciphers
 Added Acknowledgement section
 Moved the SecServerSignature and ErrorDocument

recommendations within 1.16 to new level 2
recommendation – 2.7.

