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“I think however, that there isn’t any solution to this problem of education other than to 

realize that the best teaching can be done only when there is a direct individual 

relationship between a student and a good teacher, a situation in which the student 

discusses the ideas, thinks about the things, and talks about the things. It’s impossible to 

learn very much by simply sitting in a lecture, or even by simply doing problems that 

are assigned. But in our modern times we have so many students to teach that we have 

to try to find some substitute for the ideal. Perhaps my lectures can make some 

contribution. Perhaps in some small place where there are individual teachers and 

students, they may get some inspiration or some ideas from the lectures. Perhaps they 

will have fun thinking them through or going on to develop some ideas further.”  

 

The Lectures on Physics, Richard Feynmann, June, 1963 
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1 INTRODUCTION 

Seismology is the primary tool for the study of the earth’s interior. Because few 

kilometres in depth can be drilled, all the information on deeper depths comes from 

indirect methods. Seismograms provide the data used for mapping the earth’s interior 

and for studying the distribution of physical properties. The analysis of seismograms is 

also useful for assessing the societal hazards posed by earthquakes. 

 Because of the complexity of the processes involved, the approach taken, in 

general, is to describe them with simplified models that seek to represent key elements 

of the process under consideration. A hierarchy of different approximations, as 

appropriate, are used as starting models for more detailed investigations. The most 

accurate earth model used in Seismology is a laterally heterogeneous sphere. This 

model is often approximated as being spherically symmetric, with properties varying 

only with radius. This spherically symmetric model can be further approximated for 

many purposes as a stratified half-space, in which properties vary only with depth, or as 

a layered half-space composed of discrete uniform layers (Stein and Wysession, 2003, 

[1]). 

A type of model to represent the earth medium is often chosen, and then 

seismological and other data is used to estimate the parameters of this model. Thus, a 

characteristic activity of Seismology is to solve inverse problems. Inverse problems are 

complicated to solve, because seismograms reflect the combined effect of the source 

and medium, neither of which is known exactly. Moreover, the inverse problems often 

have no unique solutions and the model parameters that describe the observations well 

do not have to reflect the physical reality necessarily. As a consequence, it is necessary 

to consider issues of precision, accuracy, and uncertainty. 

A homogeneous, isotropic, elastic, layered half-space is often used in crust and 

upper mantle studies, where the distance between source and receiver is less than few 

hundred kilometres. For larger source-receiver distances, spherical geometry is required. 

More complex and accurate models consider the anisotropic and anelastic behaviour of 

the earth, and lateral variations, or heterogeneities. 
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In addition to reflection and transmission at discrete interfaces, the reasons why 

seismic waves attenuate or decrease in amplitude as they propagate are: anelasticity (or 

deviation from eleasticity), geometrical spreading, multipathing, and scattering. 

Anelasticity, also called intrinsic absorption, implies the conversion of seismic energy 

into heat and it differs from the other processes in that energy is lost, not just moved 

onto a different path. The geometrical spreading effect is due to the redistribution of 

energy that occurs as the wave front expands or contracts during seismic waves’ 

propagation. Multipathing implies a focusing and defocusing of seismic waves by 

lateral variations in velocity.  

Scattering is due to the interaction of seismic waves with the heterogeneities of 

the medium and it occurs depending on the ratio of the heterogeneity size to the 

wavelength and the distance the wave travels through the heterogeneous region (Aki 

and Richards, 1980, [2]). When the heterogeneity is large compared to the wavelength, 

the wave is regarded as following a distinct ray path that is distorted by multipathing. 

When the heterogeneities are closer in size to the wavelength, scattering occurs. When 

the heterogeneities are much smaller than the wavelength, they simply change the 

medium’s overall properties. 

Scattering is especially important in the continental crust, which has many small 

layers and reflectors resulting from continental evolution. These structures do not affect 

waves with wavelengths longer than tens of kilometres, but they act as point scatterers 

fro shorter wavelength waves. Scattering is the cause of the presence, in high frequency 

(>1Hz) seismograms, of continuous wave trains following the direct S-wave which are 

known as coda waves. Array observations have shown that they are incoherent waves 

scattered by randomly distributed heterogeneities having random sizes and contrast of 

physical properties (Sato and Fehler, 1998) [10]. 

 A number of models have been developed to explain the relationship between 

coda-waves’ envelopes and the spectral structure of the random heterogeneity in the 

earth. The characterization of the earth as a random medium is complementary to the 

classical stratified media characterization. 

In this thesis, coda waves’ recordings from local earthquakes will be analyzed to 

estimate the three-dimensional spatial distribution of scatterers in the crust. For this 
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purpose, it is necessary to know how the scattered waves’ energy is distributed spatially 

and as a function of time. Thus, some hypothesis about the media characteristics and 

how and where the scattering is produced are necessary. The existing models on the 

scattering process will be reviewed in Chapter 2.  

These models for S-coda envelope synthesis are based on the assumption of a 

homogeneous distribution of isotropic scatterers and they predict results consistent with 

the observed characteristics of the coda. However, detailed observations show that there 

may be departures from the observed characteristics of S-coda waves which may be 

explained by a inhomogeneous distribution of scatterers. This issue will be the subject 

of Chapter 3. 

The problem of estimating deterministically the spatial distribution of scatterers 

leads to a inversion process of a huge system of equations that can not be solved by 

traditional methods. They require the use of sophisticated numerical techniques. We are 

talking about systems of equations with about 510  unknowns and 510 equations. These 

sorts of problems were solved for the first time in medical tomography applications and, 

since then, the computational methods needed have been applied to other scientific 

fields. The first approach used to obtain three dimensional reconstructions was an 

iterative method called ART. Then, other methods based on ART soon appeared. 

Although these methods are very accurate and the reconstructions are of a high quality, 

they have an important drawback: they are terribly slow and not appropriate for real 

time applications. Nowadays, scanners are able to obtain three dimensional images by 

solving large systems of equations, not by using iterative approaches, but using a 

remarkably fast non-iterative algorithm: the Filtered Backprojection. The Filtered 

Backprojection method is based on an important mathematical definition, the Radon 

Transform, and a theorem that connects the Radon transform and the Fourier Transform 

of the three-dimensional object to be reconstructed. This theorem is the so-called 

Fourier Slice Theorem.  

In Chapter 4 we will analyze in detail the ART, SIRT and Filtered 

Backprojection algorithms. ART algorithm has been previously used in other 

seismological studies (Chen and Long, 2000, [43]). SIRT reconstructions, which are 

based on ART, are less noisy and better looking than ART reconstructions at the 
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expense of computation time. We will use this algorithm for the first time in 

seismological applications. The Filtered Backprojection algorithm had never been used 

in Seismology because there is no simple way to adapt it to the kind of problem to 

solve. The Filtered Backprojection algorithm is very sensitive to the geometry defined 

by the problem to solve. Then, firstly, the Filtered Backprojection algorithm will be 

derived using a simple approach and, secondly, a generalization by taking into account 

the special geometry of our problem will be adapted to our case. This is the main 

mathematical contribution of this thesis.  

Chapters 5 and 6 present two applications of the methodology to different 

geotectonic regions in the earth: a seismically stable region in southern India and an 

active volcano in south-western Colombia. The three-dimensional spatial distribution of 

relative scattering coefficients in southern India will be estimated by means of an 

inversion technique applied to coda wave envelopes recorded by the Gauribidanur 

Seismic Array (GBA). The inversion analysis will be performed for the first time in this 

kind of seismological research by means of the Simultaneous Iterative Reconstruction 

Technique (SIRT) and Filtered Back-Projection method (FBP). Finally, the three-

dimensional spatial distribution of relative scattering coefficients will be estimated for 

the Galeras volcano, Colombia, by means of inversion analysis of coda wave envelopes 

and using the Filtered Backprojection algorithm. The scientific contribution of these 

applications is very important, since tomographic results confirm for the first time 

geological hypothesis on the structure of both regions. On the one hand, the presence of 

the Closepet granitic batholith to the east of GBA is revealed up to a depth of about 24 

km. This granitic intrussion if one of the most important geological features of the 

region that acts as the major geological boundary in the region. It is believed to be a 

Precambrian suture zone between the eastern and western Dharwar craton in southern 

India. On the other hand, the present magmatic plumbing system of Galeras volcano 

sketched by geological evidences is also confirmed. Two zones of strong scattering are 

detected: the shallower one is compatible with the presence of a shallow magmatic 

chamber located at a depth from 4 km to 8 km under the summit. The deeper one is 

imaged at a depth of ~37 km from the Earth’s surface and may be related to a deeper 

magma reservoir that feeds the system. 

Parallel to the theoretical developments in this thesis, an important amount of work 
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corresponds to programming the numerical algorithms and graphic displays. Numerical 

algorithms were programmed in C++ using a free version of Borland C++ (BuilderX 

[3]) and a commercial compiler as Microsoft Visual C++ [4] to assure a high 

compatibility. The program codes are annexed at the end of the document. Some of the 

graphic representations were generated with the DISLIN graphic libraries from the Max 

Planck Institute of Solar Research [5]. Using DISLIN, programs written in C++ were 

developed to display results. Special look-up tables (pseudocolor) were designed to 

enhance the significance of the three-dimensional reconstructions. Three-dimensional 

representations were also developed. The outcome of this effort can be particularly 

noticed in Chapter 6. 
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2 CODA CHARACTERISTICS 

2.1 INTRODUCTION 

From the geological point of view, it is evident that the earth has heterogeneities 

on many scales. Rocks have crystals that range in size from fractions of mm to a few cm 

in scale. An example is in Figure 2-1 where a picture of granite is shown.   

 

 

 

 

 

 

Figure 2-1. Picture of the crystals of granite [6]. 

Also, fractures range in size from submicroscopic to many tens of meters. Faults 

can be larger than 1000 km as S. Andreas Fault (see Figure 2-2).  

 

 

 

 

 

 

 

Figure 2-2. S. Andreas Fault, California [7]. 
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Additionally, the earth’s crust contains a wide variation of rock types; its 

composition can range on scales of a few mm to many km. Tectonic processes also 

contribute to heterogeneity in the lithosphere by means of faulting and folding.  

 

Figure 2-3. Non-filtered seismograms corresponding to Galeras volcano events (appendix A). (A) Event 

4 station 22, 26/09/1989. (B) Event 75,  station 4, 02/06/1992 (C) Event 250 station 19, 16/02/1996,  (D) 

Event 301, station 20, 30/04/1997. Green lines indicate the S-waves arrival time.  

Ground motion in the vicinity of earthquakes often dies away slowly leaving a tail 

following the passage of primary waves. Aki [8] called the observed continuous wave 

trains “coda waves” and this term has been used since then to describe the tail portion of 

regional seismograms. 

Examples of coda waves following the primary waves corresponding to events in 

the Galeras volcano (that will be studied in Chapter 6) are shown in Figure 2-3. At 

present, the word “coda” is used to refer all wave trains except direct waves, thus 

naming P-coda the waves between the direct P and S waves and S-coda the waves 

following the direct S-waves. Because the most prominent characteristic of typical high 
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frequency seismograms of local earthquakes is the coda of S-waves, in this work we 

will use the word coda for the S-wave coda.  

Aki (1969) [8] proposed that the coda was the result of the scattering of seismic 

waves by random heterogeneities in the earth’s lithosphere. Therefore, the later portion 

of regional seismograms may be considered as a result of some kind of averaging over 

many samples of heterogeneities, thus suggesting a statistical treatment in which a small 

number of parameters characterize the average properties of the heterogeneous medium.  

Aki and Chouet (1975) [9] developed two simple theoretical models that proved 

to fit extremely well the observed energy envelopes of coda waves: the single scattering 

model and the diffusion model. The first one relied on the simple assumption that waves 

are scattered only once on their way from the source to the station. On the other hand, 

the second describes the coda by means of a diffusion equation. They also introduced 

coda Q (Qc) as a parameter to account for anelastic loss of energy from the wavefield. 

Qc, which describes the rate of decay of seismogram envelopes, has been extensively 

measured in many regions of the world [10] and it has proved to be an extremely 

sensitive parameter to the geological environment. Both the single scattering and the 

diffusion models will be developed in detail in section 2.4. 

The physical interpretation of Qc in terms of the medium properties still remains 

unclear. Within the context of the single scattering theory, Qc appears to represent an 

effective total attenuation including both absorption and scattering loss: 

 
c t s i

1 1 1 1
Q Q Q Q

= = +  (2.1) 

where Qt, Qs and Qi denote the total, scattering and intrinsic quality factors, 

respectively. On the other hand, in the diffusion model Qc represents the effect of 

absorption only (Qc = Qi). In order to give a meaningful interpretation to Qc, it is 

therefore critical to determine the range of validity of the various approximations used 

to fit the data. The radiative transfer theory is the tool that can address this problem. 

This theory enables the calculation of energy envelopes of seismic waves taking into 

account all orders of scattering. Radiative transfer was first introduced in Seismology by 

Wu [11] and it has, since then, greatly enhanced the understanding of the coda of 
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earthquakes. Radiative transfer theory shows a different functional dependence 

for sQ and iQ . This makes it possible to determine both magnitudes from total 

attenuation (Frankel and Wennerberg, 1987 [12]; Hoshiba et al., 1991 [13]]; 

Matsunami, 1991 [14]),  

The most sophisticated modelling one may hope for is the complete fitting of 

seismic waveforms, which contain all information on phase and amplitude. The goal of 

the radiative transfer (and the other models commented above) is more modest as they 

aim at explaining only the energy envelope of the seismograms. However, at relatively 

high frequencies, the correlation length of the wavefield is of the order of a few 

kilometres only (Dainty and Toksöz, 1990 [15]), which makes the waveform fitting 

procedure almost inapplicable. In disordered media or random media the phase gets 

randomized by the scattering events. As a consequence, the wavefield at a point can be 

viewed as a sum of waves whose phase and amplitude are independent random 

variables. We may then reasonably expect that wave energies rather than amplitudes are 

additive in random media. But, since on the time scale of seismic observations the Earth 

is a static disordered medium we do not have access to a true statistical ensemble. In 

other words, scattering is a deterministic process that happens at cracks, 

inhomogeneities, faults…, not a stochastic process [16]. Thus, theory and observation 

can only be connected through some kind of ergodic hypothesis (time average and space 

average coincide).  

2.2 S-WAVE CODA ATTRIBUTES 

Let us first enumerate several important observations about the coda waves, which were 

compiled by Aki and Chouet [9] and that may be satisfactorily explained by a 

“backscattering model”:  

A. The spectral contents of the early part of a local earthquake seismogram depend 

strongly on the travel distance and the nature of the wave path to a station. The 

difference in spectrum among stations, however, diminishes in the later part of 

the seismograms and disappears in the coda. 

B. The coda length is nearly independent of the epicentral distance or azimuth for a 
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given region and can be used effectively as a measure of earthquake magnitude. 

C. The power spectra of coda waves from different local earthquakes decay as a 

function of time in the same manner at all stations and for all events within a 

given region. The temporal decay shape is independent of earthquake magnitude 

for events with local magnitudes (ML) less than about 6.  

D. The coda amplitude varies with the local geology at a recording site. It can be 5-

8 times larger on the sediment than on granite. Interestingly, the amplitude of 

ambient ground noise tends to be proportional to the site factor of coda 

excitation, making the total duration nearly independent of local geology. 

E. The study of coda by a small-aperture array seismographs shows that they are 

not regular plane waves from the epicenter. 

Now let us now follow the waves as they are generated when an earthquake occurs. 

An important initial consideration is that we expect that the source duration of 

earthquakes with ML<6 is less than a few seconds. This consideration is supported by 

the fact that the duration of the major event at an earthquake source may be measured 

roughly by the fault length divided by the rupture velocity, where the fault length for 

earthquakes with magnitude ML~6 is about 10 km and the rupture velocity is roughly 

the shear velocity. Similarly, the duration for an ML~1 earthquake is probably a few 

hundredths of a second.  

Then, the nature of the primary waves which spread outward from the source and 

are recorded at a station will depend on the earth’s structure along the wave path from 

source to station. As the primary waves spread out, secondary waves are generated at 

each of the heterogeneities that they encounter. Suppose for simplicity, that both the 

primary and the secondary waves are of the same kind of wave with velocity v. Then we 

consider a time interval ( ),t t t∆+  measured from the origin where t∆ is longer than the 

duration of primary waves. During this time interval the secondary waves arrive from 

the heterogeneities within the zone sandwiched by two ellipsoids, both with the foci at 

source and station and with the length of the major axis equal to ( ) and vt v t t∆+ . If we 

consider seismograms of an event recorded at two different stations, for the given time 

interval ( ),t t t∆+  the two ellipsoidal zones will increasingly overlap as t increases. 
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Besides, a greater number of heterogeneities will contribute to the later time interval and 

tend to average out the difference between backscattering energies received at the two 

stations. Thus the difference in the appearance of seismograms disappears in the coda. 

2.3 CHARACTERIZING S-CODA ENVELOPES 

To characterize S-coda envelopes one often calculates the smoothed trace of the square 

of the seismogram for a narrow frequency band, which is called the MS seismogram 

envelope. The amplitude of the MS envelope is linearly proportional to energy density. 

A very important property of the MS envelopes ( )2 ,A f t  (which are a function of 

frequency f and lapse time t) is that they can be described as the product of the spectrum 

of waves radiated by the source ( )S f , and a function describing the response of the 

medium to a source ( , )f tφ (Aki, 1969 [8]):  

 2 ( , ) ( )· ( , )A f t S f f tφ=  (2.2) 

This relation constitutes a cornerstone in coda-wave analysis and has been 

confirmed for many different areas (Aki and Chouet, 1975[9]; Rautian and Khalturin, 

1978 [17]). The assumption that ( , )f tφ  is common to all sources implies that different 

seismic sources share a common composition of wave types, so that the same scattering 

effects apply to all. Then, the precise form of ( , )f tφ depends upon how seismic waves 

are scattered and attenuated.  

Two extreme models of scattering are the single scattering, for which outgoing 

waves are reflected only once before reaching the receiver, and multiple scattering, to 

the extent that seismic energy is scattered so much that it diffuses away from the source. 

For both cases, when the time t after the event is large compared with the distance to the 

source, r, divided by the wave velocities v, (t>>r/v), theoretically is ( , )f tφ independent 

of distance r, and is of the form: 

 
c

2( , ) exp( )ftf t t
Q

ν πφ −= −  (2.3) 

where Qc is a measure of attenuation. The constant ν takes into account geometrical 
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spreading and it is equal to 2 for single scattering of body waves. The diffusion theory 

gives 3 / 2ν =  (Aki and Chouet, 1975 [8]; Rautian and Khalturin, 1978 [17]) Then, if  

( )2 ,A f t  follows Eq. (2.2) and the envelope of the coda is predicted to be and turns out 

to be independent of the source spectrum ( )S f , in principle the parameters ν  and Qc 

can be determined. From them, inferences about how scattering takes place can be made 

and the properties of different regions can be compared. 

A remarkable property of the coda is that at any given station, for each 

frequency band, the dependence of the envelope of the coda on time is nearly identical 

for all events in a large region surrounding the station. This was noticed by Rautian and 

Khalturin (1978) [17] when they represented together data from several different events 

of different magnitudes in a certain region and obtained parallel lines. If the events were 

combined without regard to their individual levels, they observed a remarkably good 

overlapping. When they built a summary of coda envelopes for different frequency 

bands as a function of time they observed that for each band the scatter among the data 

was remarkably small, in general less than a factor of 2 (see Figure 2-4). Even when 

these bands were built from events within 50 km of the station, data from events as far 

as 600 km from intermediate depths also fell on the bands. They concluded that, at a 

given station, the time dependence of the envelope of the coda in the frequency band 0.1 

to 40 Hz is essentially independent of the location of the source, which justifies the 

separation of the coda spectrum at a given site into a source factor, which is independent 

of time, and a path factor which shapes the coda with time.  

The above authors also experienced that the amount of time that must transpire 

before the coda envelopes overlap one another depends on epicentral distance. They 

observed that if tS-t0 is the time between the S-wave arrival time tS and the origin time 

t0, then often after 02( )st t− and always after 03( )st t− , the general form of the coda is 

established. 
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Figure 2-4. Summary of root mean squared coda envelopes for different frequency bands. Data are from 

many different events [17]. 
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Although the time dependence of the envelope of the coda at a particular station 

is independent of the position of the earthquake, sometimes the envelopes at different 

stations from the same earthquake are different in absolute level. This presumably 

reflects differences in the environments of stations-attenuation and local site effects. 

The time dependences of the codas for different events differ only by a constant factor 

for each frequency band. Therefore when a simple correction is applied to the codas at 

one station, the corrected envelopes overlap the observed envelopes at the other station 

for all events. This correction is the same for all events independent of the positions of 

the earthquakes, and therefore epicentral distance. Then, the envelope of the coda over a 

wide range of frequencies is a very stable function of time and of hypocenter. Rautian 

and Khalturin (1978) [17] noticed that coda envelopes cannot be described by a single 

Qc value, but it changes with different segments and different frequencies. Single 

scattering coda models that are based on the assumption of spatial homogeneity of the 

scattering coefficient and intrinsic attenuation predict that Qc is independent of lapse 

time. Most of the investigators who found a lapse time dependence of the coda decay 

rate suggested that the later portion of the coda is dominated by energy that has 

propagated in zones with lower attenuation than energy in the early coda. However, 

lapse time dependence of coda decay is still an unresolved issue (Sato and Fehler, 1998) 

[10]. 

The frequency dependence of Qc can be written in the form of a power of 

frequency f as c
nQ f∝ for f >1 Hz. The power n ranges between 0.5 and 1. 

2.4 TWO EXTREME MODELS FOR CODA WAVES 

Several phenomenological models for coda-wave generation have been proposed. 

Aki and Chouet (1975) [9] proposed the single backscattering model to explain the time 

dependence of the scattered energy density at the source location in 3-D space. They 

considered the case of impulsive spherical radiation of total energy from the source, 

which location was coincident with the receiver.  

Sato (1977)[18] extended the formulation for the case of a single isotropic 

scattering model for general source and receiver locations. Under the single scattering 

approximation, the coda is considered as a superposition of backscattering wavelets 
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from discrete scattering sources. Each wavelet is due to a single scatterer in the absence 

of the other scatterers. Another extreme model is to consider the seismic energy transfer 

as a diffusion process (Wesley, 1965 [19]; Aki and Chouet, 1975 [9]; Dainty and 

Toksöz, 1981 [20]).  

2.4.1 SINGLE ISOTROPIC SCATTERING MODEL 

We are going to consider now how the elastic energy propagates in a three-dimensional 

infinite elastic medium, in which numerous scatterers are distributed homogeneously 

and randomly, when the elastic energy is radiated spherically. In other words, we 

restrict the problem to the body wave isotropic scattering. Then, we will derive a space-

time distribution of the mean energy density of the single scattered waves in a similar 

fashion as the one given by Sato (1977) [18].  

2.4.1.1 Distribution of scatterers. Isotropic scattering assumption 

We suppose that scatterers are distributed randomly and homogeneously with a number 

density n in the elastic medium. The scattered waves will be considered as incoherent 

waves. Scatterers are generally characterized by the effective cross sectionσ . Here, we 

notice that σ depends on 2 fω π= . When scatterers are distributed homogenously with 

the number density n, the length  

 1l
nσ

=  (2.4) 

is the mean free path and l v  the mean free time, being v the wave velocity. The 

scatterers reduce the mean energy flux density of the incident wave by ( )exp x l− , 

where x is the distance along the propagation direction. The scattering coefficient 

(turbidity) corresponds to g=1/ l  and can be measured. The turbidity is of the order of 
5 6 110 10 m− − −∼ at frequencies higher than 10 Hz [9]. 

Here, we will assume isotropic scattering in order to obtain an analytic solution 

with rather simple calculations. Roughly, isotropic scattering may be assumed when the 

wavelength aλ ≈ where a is the size of the scatterers (Sato, 1977, [18]). For the sake of 

simplicity, no conversion between longitudinal waves and transverse waves during 
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scattering will be considered and the medium will be characterized by a single wave 

velocity.  

2.4.1.2 Single isotropic scattering approximation 

Let us suppose that the mean free path l is much longer than the distance r under 

consideration ( )r l�  or ( )/t l v� . Since the scattering is assumed to be a weak 

process, only single scattering is considered. Let us also suppose that the source emit a 

unit of energy in the time t=0. The mean energy density at a certain distance r1 may then 

be written as: 

 
( )1

1 1 2
1

exp
( , )

4d

n r
E r t r v dt

r
σ

π
−

= =  (2.5) 

where dt is the time it takes to emit the unit energy. Note that Ed is the energy per unit 

area and per unit time. The amount of energy scattered at a certain volume 

(dV=dS·dr=dS·v·dt) may then be written as: 

 
( ) ( )1 1

1 1 2 2
1 1

exp exp
( , )

4 4s

n r n n rdrE r t r v vdtdS dS dV
r l r
σ σ σ

π π
− −

= = ⋅ ⋅ =  (2.6) 

where Es is the energy scattered per unit volume and per unit time. The mean energy 

flux re-emitted by a certain scatterer (located inside a certain dV at the coordinates 1r ) at 

a point 2r  is then written as: 

 ( ) ( ) ( )2
1 12

2

exp
, ,

4s s

n r
E r t vdtdS E r t r v vdtdS

r
σ

π
−

= ⋅ =  (2.7) 

where = +1 2r r r . Using Eq.(2.6) we obtain: 

 ( ) ( )
( )

1 2
2 2 2

1 2

exp ( ) 1,
4s

n n r r
E r t vdtdS dV

r r
σ σ

π

− +
= ⋅ ⋅  (2.8) 

In order to get all the energy scattered in a certain time interval dt we will 

consider a new set of coordinates (alternate prolate spheroidal coordinates which are 

adapted to “two-centre” problems [21]):  
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( )( )
( )( )

( )

2 2
1 2 3

2 2
1 2 3

1 2

3 2 2
1 2 1 2 3

1 1 cos

1 1 sin

x a

y a

z a

dV vdtdS a d d d

ξ ξ ξ

ξ ξ ξ

ξ ξ

ξ ξ ξ ξ ξ

= − −

= − −

=

= = −

 (2.9) 

The set of coordinates ( )1 2 3, ,ξ ξ ξ  are defined on certain intervals that we write 

as: 1 2 3[1, ),   [ 1,1],   [0, 2 ].ξ ξ ξ π∈ ∞ ∈ − ∈   

 

 

 

 

 

 

 

Figure 2-5 Prolate spheroidal coordinates. 1 2 3sinh ,  cos ,  ξ ξ ξ η ξ φ= = = [21]. 

Then we write the coordinates of the source as (0,0,-a), and the ones of the 

receiver as (0,0,a). Then (0,0,2 )a=r , 1 ( , , )x y z a= +r , 2 ( , , )x y z a= −r . Notice the 

following equalities: 

 
( ) ( )1 1 2 2 1 2 1 2

1 2 1 2
1 2

2

      
2 2

r a r a a r
r r r rvt

a r a

ξ ξ ξ ξ

ξ ξ

= + = − = + =

+ −
= = =

r r
 (2.10) 

where r is the distance from the source to the observer. Notice that: 

 1
vd dt
r

ξ =  (2.11) 
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Then dV may be writen as: 

 ( )3 2 2
1 2 2 3

1dV vdtdS vdt a d d
r

ξ ξ ξ ξ= = ⋅ −  (2.12) 

and using Eqs. (2.9) , (2.10) and (2.12) in Eq. (2.8) we obtain: 

 
( ) ( ) 2 32 2 2

1 2

exp( ) 1 1( , )
4s

n nE r t vdtdS vdt d d
ar

σ σ ξ ξ
ξ ξπ

−
=

−
 (2.13) 

Now, integrating the third coordinate: 

 ( ) 22 2 2
1 2

exp( ) 1( , )
4s

n nE r t vdtdS vdt d
r

σ σ ξ
π ξ ξ

−
=

−
 (2.14) 

and then the second we obtain: 

 1
2

1 1

1exp( ) 1( , ) ln
4 1s

n nE r t vdtdS vdt
r

ξσ σ
π ξ ξ

 +−
=  − 

 (2.15) 

Using Eq. (2.10) we may finally write: 

 ( ) ( )exp 1, ln
4s

n n vt vt rE r t
r vt vt r

σ σ
π

− + = ⋅ ⋅  − 
 (2.16) 

 

2.4.1.3 Properties of the solution 

It is important to consider how this distribution behaves for t r v� . Considering a first 

order Taylor expansion of the logarithmic expression we obtain:  

 

21 /ln 2
1 /

r r vt r
vt r vt vt

+   
   −   

�  (2.17) 

Then, for t r v� we may write:  
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 ( )2
exp( )( , )
2

s
n n vtE r t

vt
σ σ

π
−�  (2.18) 

We observe a t-2 dependence under such condition, as derived for the single 

backscattering model of Aki and Chouet (1975) [9]. 

We notice now that Eq. (2.16) makes sense only for vt r≥ . Then we may write: 

 ( ) ( ) ( )exp 1, ln
4s

n n vt vt rE r t vt r
r vt vt r

σ σ
θ

π
− + = ⋅ ⋅ − − 

 (2.19) 

This distribution diverges for vt r→ . The total energy scattered up to a certain 

time t may be written as: 

 ( ) ( )2

0 0

exp
( ) , 4 ln

vt

s

n n vt vt rU t E r t r dr r dr
vt vt r

σ σ
π

∞ − + = = ⋅ ⋅  − ∫ ∫  (2.20) 

and solving the integral it yields: 

 ( )( ) expU t n vt n vtσ σ= −  (2.21) 

Notice that this expression does not tend to one for t → ∞ ; it tends to zero. The 

expressions previously developed are only valid for t l v� . This means that as time 

increases, the energy coming from double scattering becomes smaller.  

2.4.2 RATIO OF SINGLE SCATTERED ENERGY VERSUS MULTIPLE 
SCATTERED ENERGY 

Equation (2.19) gives us the distribution of energy that arrives at the distance r at the 

time t after a single scattering process. Equation (2.21) gives us the total amount of 

energy scattered by a single scattering process up to the time t. This energy is 

distributed inside a sphere with a radius Ur vt= . The total amount of energy scattered up 

to the time t and also distributed inside a sphere with a radius Ur vt=  may be easily 

written as: 

 ( ) 1 exptotal
tU t

Q
ω 

= − − 
 

 (2.22) 



 39

Then, we may write the ratio of the single scattered energy to the total scattered 

energy up to a time t as:  

 

exp( )( )
1 exp

n vt n vtR t
t

Q

σ σ
ω

−
=

 
− − 

 

 (2.23) 

and taking into account the following equalities: 

 1 CvQl
nσ ω

= =  (2.24) 

we may rewrite the ratio as:  

 

exp( )
( )

1 exp

t n vt
QR t

t
Q

ω σ

ω

⋅ −
=

 
− − 

 

 (2.25) 

In order to study this expression let us define the following parameter:  

 

t
Q
ωξ =  (2.26) 

Then we rewrite the ratio as:  

 

exp( )( )
1 exp( )

R ξ ξξ
ξ

−
=

− −
 (2.27) 

The ratio takes the following values; R(0)=1.0; R(0.20)=0.90; R(0.43)=0.80; 

R(0.67)=0.70. Let us take as a unit of time the arrival time at d v=  (d is the hypocentral 

distance); then we shall rewrite the time as an t⋅ . Let us also compute ξ  for f=1 Hz and 

v=3.5 Km/s for several possible values of Q and n. Then, we rewrite ξ as a function of 

d, n,v and Q:   

 

2n d
v Q

πξ = ⋅ ⋅
⋅

 (2.28) 
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It might be useful to have d as function of the other parameters: Then using Eq. 

(2.28):  

 2
v Qd

n
ξ

π
⋅

=  (2.29) 

Let us calculate now for what distance d is R(ξ )=0.9 or R(ξ )=0.8 for n=2 and 

n=3 for several values of Q. From Eq. (2.27) R(ξ )=0.9 is verified when ξ  = 0.2, and 

R(ξ )=0.8 is verified when ξ  = 0.43. We take. v=3.5 km·s-1. 

Results are plotted in table Table 2-1 and represented in Figure 2-6. The table 

and the figure show the distances (in km) up to which the single scattered energy 

constitutes the 90% and the 80% of the total radiated energy for several values of the 

quality factor of the medium. These values indicate that care should be taken when 

using the single scattering approximation in regions where Q might be a small number.  

d (n=2) (km) d (n=3) (km) Q 

0.2ξ = 0.43ξ = 0.2ξ = 0.43ξ =  

50 2.7 6.0 1.8 4.0 

100 5.6 12.0 3.7 8.0 

200 11.1 23.9 7.4 16.0 

400 22.3 47.9 14.8 31.9 

800 44.6 95.8 29.7 63.9 

Table 2-1 Maximum distance up to which the single scattering approximation may be used (v=3.5km/s). 
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Figure 2-6 Maximum distance up to which the single scattering approximation may be used (v=3.5 

km/s). Blue lines correspond to n=2 and red line to n=3. Solid lines correspond to 0.2ξ = and dashed 

lines to 0.43ξ = . 

2.4.3 DIFFUSION THEORY 

As lapse time increases it is expected that multiple scattering will dominate compared to 

single scattering. For large lapse times, it is reasonable to assume that direct energy is 

small and that multiple scattering produces a smooth spatial distribution of energy 

density. We shall now describe another model in which a strong multiple scattering 

process can be formulated by means of the diffusion equation (Sato and Fehler, 1998) 

[10].  

Let ( , , )E t ωr be the seismic energy per unit volume within a unit frequency band 

aroundω . Taking into account linear dissipation in the medium, the diffusion equation 

may be written as: 

 2E D E E
t Q

ω∂
= ⋅∇ − ⋅

∂
 (2.30) 

where D is the diffusivity and the last term represents the loss by anelasticity which 
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turns the seismic energy into heat. Clearly, here Q is the intrinsic quality factor and does 

not include the loss by scattering.  

The diffusivity D may be related to the wave-scattering process. In analogy with 

the scattering of particles moving with a certain mean free-path, Dainty et al. [20] 

obtained the relation between D and the mean free path l as: 

 
3

v lD ⋅
=  (2.31) 

where v is the velocity of the wave propagation and l is defined as the distance travelled 

by the primary wave, over which its energy is reduced to e-1 by scattering. 

The solution of Eq. (2.30) for a point source in time and space is given by: 

 ( ) ( )
( )

2

3/ 2, , exp exp
44

U r tE t
Dt QDt

ω ωω
π

   
= − −   

  
r  (2.32) 

where ( )U ω is the total seismic energy generated by one earthquake within the unit 

frequency band around ω . For large t, ( )210 4t r D≥ ⋅ and small distance r at which 

coda waves are observed, Eq. (2.32) becomes a function of only time and is independent 

of distance: 

 ( ) ( )
( )3/ 2, , exp
4
U tE t

QDt
ω ωω

π
 

= − 
 

r  (2.33) 

The diffusion model solution Eq. (2.33) was used for the analysis of coda 

recorded near the hypocenter of earthquakes (Wesley, 1965 [19]; Aki and Chouet, 1975 

[9]) and the coda of lunar earthquakes (see Figure 2-7) (Nakamura, 1977 [22]; Dainty 

and Toksöz, 1981 [23]). The energy on the moon is intensely scattered due to the 

fractured regolith and intrinsic absorption is weak due to the lack of intergranular water. 
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Figure 2-7. Lunar earthquakes [24] showing long coda durations. 
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2.5 RADIATIVE TRANSFER THEORY 

The squared sum of incoherent S-waves that are singly scattered by distributed random 

heterogeneities can provide an adequate first-order model of the MS envelope of S-

wave seismograms. However, as lapse time increases, a greater contribution of higher-

order multiple scattering is expected. A systematic approach for modelling the multiple 

scattering process is to use the radiative transfer theory for the energy density. The 

equation of radiative transfer is a basic analytical tool in nuclear reactor theory, in the 

kinetic theory of gases or in electron transport through conducting materials. The theory 

of radiative transfer discards the phase information contained in individual 

contributions; actually, this theory focus on the transport of energy, very much like a 

nuclear physicist is interested in the flux of neutron obtained by summing over 

individual particles. It is assumed that the addition of power holds rather than the 

addition of wavefields. 

We will define now the fundamental quantities which the subject of Radiative 

Transfer deals with and derive the basic equation (the equation of radiative transfer) 

[25]. The solution of this equation will provide us an expression describing the 

characteristics of the envelope of seismograms and will be useful to evaluate the 

magnitude of certain important parameters.  

2.5.1 RADIATIVE TRANSFER EQUATION 

Consider the elemental volume shown in Fig. 1.1 with cross-section da and length ds 

containing ndads scatterers with n the number density of scatterers. Let the spatially 

incoherent intensity be defined as the energy per area, per time, and per solid angle d Ω  

so that the energy emergent from this volume in the ŝ direction is ( , )d d dI s t a t Ω  . The 

energy a distance ds away, moving at speed c also in the ŝ direction at a time later will 

be ( d , d )d d dI s s t t a t Ω+ + . 
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Figure 2-8. Propagation through the scattering volume in the ŝ direction and emission into the ŝ direction 

from scattering events due to energy from the ŝ' direction [26]. 

The difference in energy can be attributed to a loss caused by absorption and scattering, 

and an increase caused by emissions into the direction of propagation from other 

scattering events or from sources within the medium. This energy balance is written as: 

 
( d , d )d d d ( , )d d d

( , )d d d d ( , )d d d d
I s s t t a t I s t a t

I s t a s t n s t a s tη ε
Ω Ω

Ω Ω
+ + − =

− +
 (2.34) 

where ( )s anη σ σ= +  is the total intensity attenuation, aσ  is the absorption cross 

section per scatterer, sσ  is the scattering cross section per scatterer, and ( , )s tε  is the 

emission coefficient per scatterer.  

The absorption cross section may include absorption within the scatterer as well 

as dissipation within the medium (which is zero for most applications with 

electromagnetic waves). The emission coefficient may include emissions from 

scattering events and primary sources. Equation (2.34) implies that 

 ( , ) ( , )d d ( , )d ( , )dI s t I s ts t I s t s n s t s
s t

η ε∂ ∂
+ = − +

∂ ∂
 (2.35) 

 Since d ds c t= , Eq. (2.35) becomes: 
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 ( , ) 1 ( , ) ( , ) ( , )I s t I s t I s t n s t
s c t

η ε∂ ∂
+ = − +

∂ ∂
 (2.36) 

Note that in the absence of emissions, I(s,t) displaces and attenuates with time in 

the following manner: 

 ( )( , ) ( ) expI s t f s ct ctη= − −  (2.37) 

In three dimensions the radiative transfer equation becomes 

 1 ( , , )ˆ ˆ ˆ( , ) ( , , ) ( , , )I tI s t I t n t
c t

η ε∂
∇ ⋅ + = − +

∂
r ss r s r s  (2.38) 

where ŝ  is the direction of propagation, r is the space vector and the total attenuation 

has been assumed isotropic (i.e. independent of ŝ ).  

To find the emission coefficient, consider the same volume of scatterers with 

radiation incident from the ˆ 's  direction within the solid angle 'dΩ  scattering into the ŝ  

direction in solid angle dΩ  also shown in Figure 2-8. Let the angular distribution of the 

scattered portion of the radiation, scattered from the direction into the direction, be 

defined by  

 ˆ ˆ( , ')
4
dq

π
Ωs s  (2.39) 

where ˆ ˆ( , ')q s s  is the phase function (Chandrasekhar, 1960)[25] and is 4π  times the 

differential scattering cross-section (Ishimaru, 1978, [27]). The phase function is 

normalized so that  

 
4

ˆ ˆ( , ')
4 s
dq

π

σ
π
Ω

=∫ s s  (2.40) 

which means that for isotropic scattering ˆ ˆ( , ') sq σ=s s . This angular distribution 

multiplied by the intensity and integrated over all incoming directions is the emitted 

radiation per scatterer. Thus in the absence of primary sources the emission coefficient 

is: 
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4

ˆ ˆ ˆ ˆ( , , ) ( , ') ( , , )
4
dt q I t

π

ε
π
Ω

= ∫r s s s r s  (2.41) 

The full scalar radiative transfer equation is then written as: 

 
4

1 ( , , )ˆ ˆ ˆ ˆ ˆ( , ) ( , , ) ( , ') ( , , )
4

I t dI s t I t p I t
c t π

η
π
Ω∂

∇ ⋅ + = − +
∂ ∫
r ss r s s s r s  (2.42) 

where ˆ ˆ ˆ ˆ( , ') ( , ')p nq=s s s s  is the phase function for an assemblage of independent 

scatterers. The radiative transfer equation is a first order integro-partial differential 

equation in space, time, and propagation direction. Its solutions are in general 

nontrivial.  

2.5.2 SOLUTIONS OF THE RADIATIVE TRANSFER EQUATION. 
ISOTROPIC SCATTERING 

Initial seismological models using the radiative transfer theory are those of Wu 

(1985)[28] and Wu and Aki (1988) [11]. They applied the stationary state solution for 

media having isotropic scattering. Shang and Gao (1988) [29] first formulated the 

multiple isotropic scattering process in 2-D space as an integral equation for the 

nonstationary state for the case of impulsive radiation. Zeng et al. (1991) [30] extended 

the nonstationary case to 3-D space. Sato et al. (1997) [31] used the radiative transfer 

theory to investigate the multiple isotropic scattering process for nonspherical source 

radiation whereas Sato (1994 [32], 1995 [33]) investigated the multiple nonisotropic 

scattering process in the framework of the radiative transfer theory.  

The radiative transfer equation can be solved exactly in the Fourier space [30] in 

the case of isotropic scattering for one, two, three and four dimensions. It is possible to 

write an explicit expression in one, two and four dimensions. In three dimensions an 

accurate interpolation formula can be derived [34]. 

We will focus in the solutions on the real three-dimensional space. If we 

consider isotropic scattering, we may rewrite Eq. (2.42) in the following way: 
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1 1 1 1

4

1 ( , , )ˆ ˆ ˆ( , ) ( ) ( , , ) ( , ) ( , , )

ˆ( , ) ( , , )
4

a
I tI s t l l I t l I t c S t

c t
dI t I t

π π
Ω

− − − −∂
∇ ⋅ + = − + + +

∂

= ∫

r ss r s r r s

r r s
 (2.43) 

where 1
sl nσ− = and 1

a al nσ− =  and S is a source function.  

We notice here that the dependence of the intensity on the absorption is through 

a r and ŝ independent factor  

 ( )  ( , ) ( , ) exp /with absorption without absorption aI t I t ct l= −r r  (2.44) 

Without loss of generality we can, therefore, leave the absorption of our 

considerations in the following, taking effectively al → ∞  

The solution will be written as a summation of three terms. The first one 

corresponds to the ballistic peak. The second one corresponds to the contribution due to 

single scattering. The last term accounts for multiple scattering.  

2.5.2.1 Ballistic peak and single scattering 

The ballistic peak consists of a delta function due to unscattered waves: 

 0 2

1( , ) ( ) exp
4

ctI r t r ct
r l

δ
π

− = −  
 

 (2.45) 

This peak will be followed by a tail due to waves which have undergone a single 

forward scattering event. The shape of the tail is given by 1P , which can be computed 

analytically for any dimension. 1P  has an integrable singularity at r=ct, which adds a tail 

to the ballistic peak. The singularity is logarithmic: 

 1
1( , ) exp ln

4
ct ct rI r t

lctr l ct rπ
− +   =    −   

 (2.46) 
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2.5.2.2 Multiple scattering 

The contribution coming from multiple scattering is usually written as the summation of 

two terms. In this way the corresponding integrals may be evaluated by means of 

numerical integration techniques. The first term corresponds to double scattering: 

 
22 /

2 2 0

1 3 1( , ) exp ln d
16 1

r ctctI r t
l l ct r

π α α
π α

  +    = − −     −      
∫  (2.47) 

and the other terms correspond to multiple scattering (excluding double scattering): 

 

4

3 3 20
3

arctan
1/1 exp( ) 1( , ) d d

4 2 1arctan
1/

n
N

k
l ii ctP r t k

rl k kk
l l i

π
ΩΩ

Ω

Ω

+∞ ∞

−∞
≥

  
  +  =

  −   +  

∑ ∫ ∫  (2.48) 

This is the expression that Passchenns [34] obtained. The expression derived by 

Zeng [30] including absorption may be written as: 

 

4

3 3 20
3

arctan
1/ 1/1 exp( ) 1( , ) d d

4 2 1arctan
1/ 1/

a
n

N

a

k
l l ii ctP r t k

rl k kk
l l l i

π
ΩΩ

Ω

Ω

+∞ ∞

−∞
≥

  
  + +  =

  
−  + +  

∑ ∫ ∫    (2.49) 

This expression also verifies Eq. (2.44). Actually, it possible to define a new 

variable 'Ω  such that: 

 
' 1/

' /
a

a

i i l
i l

Ω = Ω −
Ω = Ω +

 (2.50) 

It is then easily demonstrated that both solutions are identical.  

2.5.2.3 Analytical approximation of multiple scattering integrals 

It is possible to derive accurate analytical expressions to compute the integrals 

corresponding to Eq. (2.47) and Eq. (2.48). The solution may then be written (with 

accuracy within 2% out of the ballistic peak): 
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( )

( )

( )
( )

2

1 3
2 2 2 8 2 4

2 2

3 3
4 23/ 2

3
1 4

1( , ) ( ) exp
4

1
exp 1

4 3

( ) 8(3 )
!

N

N

ctI r t r ct
r l

r c t ct ct rG
l ct l l c t

N xG x x
N N

δ
π

π

Γ
Γ

�

∞
−

=

− −  
 

 −  −   + −        
 

+
= ∑

 (2.51) 

Where it is possible to approximate G(x) as follows 

 ( ) exp( ) 1 2.026 /G x x x� +  (2.52) 

All these expressions are useful in the calculation of 1l−  and 1
al
− [13]. 

2.5.2.4 Comparing exact solutions and approximate solutions 

The only way to compare the analytical approximate solution an the exact solution is to 

carry out a numerical integration of the double integral in Eq. (2.48). This integral is a 

difficult one because of the following reasons: 

i. The integrand is highly oscillatory 

ii. The integrand logarithmically diverges in the limits of integrations. 

It is possible to use the Fast Fourier Transform (FFT) [35-36] algorithm to evaluate 

the integral. FFT algorithm may not be an accurate algorithm when the integrand is 

highly oscillatory. In such a case aliasing effects may arise and the accuracy of the 

calculation may be low.  

To avoid this problem, Paasschens [34] develops real integrals in order to facilitate 

the numerical inversion of the Fourier Transform in Eq. (2.48). We could not obtain the 

exact result from that development. We used several cubature algorithms (included the 

ones described in the next paragraphs) but all of them gave us a wrong solution. We 

were not able to tell if the error was originated because of a wrong evaluation of the 

integral by numerical algorithms or because there is a typographic mistake in the 

Paasschens development. Certainly, the evaluation of two-dimensional integrals is a 

non-trivial problem, especially if the integrand shows a strong oscillatory behaviour and 
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also diverges in some regions. 

Then we decided to obtain the exact solution directly from Eq.(2.48) using powerful 

numerical algorithms. We finally used two different algorithms, a two-dimensional 

adaptative cubature algorithm called Cubpack [37] and a non-adaptive algorithm r2d2lri 

[38]. These algorithms employ very different strategies for automatic integral 

evaluation. [39]. Then, if both methods give us the same result this will indicate that we 

are on the right way. A short description of both methods follows. 

Cubpack employs a globally adaptative algorithm that uses successive refinements 

or subdivisions of the integration region (IR) where each subdivision is used to provide 

a better approximation to the integral. These subdivisions are designed to dynamically 

concentrate the computational work in the subregions of IR where the integrand is most 

irregular, and thus to adapt to the behaviour of the integrand. The general structure of 

the globally adaptive algorithm consists of a sequence of stages. Each stage has the 

following five main steps:  

i. Select a subregion with largest estimated error from the current set of 

subregions. 

ii. Divide the selected subregion.  

iii. Apply a local cubature rule to any new subregions.  

iv. Update the subregion set.  

v. Update the global integral and error estimates, and check for termination.  

The initial subregion set for the algorithm is the original collection of simplices (n-

dimensional triangles) of IR. The required input for such an algorithm is IR, the 

integrand, a limit on the number of integrand values allowed, and a requested error 

tolerance. The algorithm terminates when the estimated global error is less than the one 

requested or further subdivision would require too many function evaluations. 

r2d2lri is a non-adaptive algorithm implemented in C++ for performing automatic 

cubature over a wide variety of finite and non-finite two-dimensional domains. The core 

integrator of r2d2lri() evaluates cubatures over the domain 2[0,1] using a non-adaptive 
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sequence of embedded lattice rules, coupled with a sixth-order Sidi transformation (a 

type of variable transformation for numerical integration). Before any cubature is 

performed, the provided integral is automatically transformed onto 2[0,1] . Since 

different types of non-finite to finite domain transformations suit different forms of 

integrand behaviour, for non-finite domains, r2d2lri performs cubatures using an 

ordered succession of up to three different transformations onto 2[0,1]  until it is 

determined that the requested accuracy (or the best achievable result) has been attained. 

These methods allow to carry out integrations over real integrands. Notice that 

the integral in Eq. (2.48) has to be a real number since it corresponds to an addition of 

multiple scattered energies. Using the following identity: 

 arctan( ) ln
2
i i zz

i z
+ =  − 

 (2.53) 

it is possible to easily devise an algorithm to compute the real part of the integrand. 

To check the accuracy of Eq. (2.51) and Eq. (2.52) we now compare with a 

numerical evaluation of Eq.(2.46), Eq. (2.47) and Eq.(2.48) in Figure 2-9. Eq. (2.47) 

may be evaluated with a standard one-dimensional integration algorithm as the 

Romberg algorithm [46].  Eq.(2.48) will be evaluated using Cubpack++ and r2d2lri 

algorithms. Both algorithms will provide almost identical results. Only the ones 

obtained with Cubpack++ will then be plotted. Also, the diffusive approximation in 

Eq.(2.32) is considered in the figure.   



 53

0.0 1.0 2.0 3.0 4.0 5.0 6.0
ct/l

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

lr
2 P

(r
,t

)

Figure 2-9. Intensity as a function of time t, at distances 2.0 ,  2.8  and 4.0r l l l= , from left to right. The 

blue lines are the exact result, which is very close to the interpolation formulas: green line corresponds to 

Eq. (2.51) and orange line corresponds to using the approximation in Eq. (2.52). Dashed red lines 

correspond to the Gaussian diffusive result. 
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3 SPATIAL DISTRIBUTION OF CODA SCATTERERS 

3.1 INTRODUCTION 

The fundamental assumption of all coda models of Chapter 2 is that intrinsic absorption 

and the distribution of structures causing scattering is random and uniform (e.g. Aki & 

Chouet, 1975 [9]; Sato, 1977 [18]). As a result of this assumption all these models 

predict that the envelopes of S coda waves should decay smoothly and that the coda 

decay rate should be independent of the hypocenter. The observed envelopes of S coda 

waves differ from those synthesized by models based on the hypothesis of a random and 

uniform distribution of scatterers in space. Small amplitude fluctuations or ripples 

overlying on a smoothly decaying coda envelope which is predicted by the scattering 

theory, are often observed. This observed behaviour can be explained by a non-uniform 

three-dimensional distribution of scatterers in the crust due to localized inhomogeneities 

such as active faults, volcanoes, subducting slabs and so on. Then, a deterministic 

approach on coda waves is necessary in order to elucidate the detailed inhomogeneous 

structures in the crust and the upper mantle. 

 

Nishigami (1991) [40], identified the structures causing strong scattering by 

analyzing the observed coda envelope fluctuations from a synthesized model. In this 

work, he analyzed the seismic data of Hokuriku district of central Japan and detected 

zones of strong scattering in the surface layer and upper crust; some of these regions of 

strong scattering were located near major active faults. Applying the coda-envelope-

inversion technique to three regions in central part of Japan, Nishigami [41] identified 

significant heterogeneous structures in the crust around one active fault system and two 

active volcanoes. In the same way, he established also the three-dimensional 

distribution of scatterers in the crust in San Andreas Fault system region [42]. There are 

also other authors applying similar techniques to other regions. Chen and Long (2000) 

[43], in the Piedmont Province of central Georgia, found a correlation at shallow depths 

between zones of strong scattering and the location of hypocenters and areas with 

greater topographic relief, and were able to identify a strong reflecting layer which was 

consistent with a thrust plain previously reported using other geophysical methods. 
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More recently, Asano and Hasegawa (2004) [44] suggested the correlation between 

large scattering zones with the existence of fault-damaged zones in south-western Japan, 

as well as other scattering properties of the region at different depths. 

 

Following Nishigami’s work, in section 3.2, we will develop the method of 

analysis necessary to establish the distribution of scatterers. This method implies a 

previous knowledge of the depth dependent velocity model and it assumes a synthetic 

single isotropic scattering model for the absolute reference scattering coefficients (Sato, 

1977, [18]). An important step to establish this distribution is the computation of the 

energy residuals. This calculation is explained in detail in section 3.3. 

3.2 THE OBSERVATIONAL EQUATION 

In this section, we are going to develop an inversion method of coda waveforms in 

order to estimate the spatial distribution of coda scatterers deterministically. Therefore 

we will derive the relationships between the fluctuation of observed coda power 

envelope and the spatial variation of scattering coefficient.  

We start by considering the Single Isotropic Scattering (SIS) model for the shape 

of the coda of local earthquakes [18] which assumes single isotropic scattering, random 

and homogeneous distribution of scatterers, and spherical radiation of elastic energy. 

According to the SIS model, and considering the anelastic attenuation effect, the coda 

energy density at a frequency f, hypocentral distance r and lapse time t in a three-

dimensional space can be expressed as an integral all over the space in the form [18]: 

 
120 1 2

2 2 2
1 2

( ) ( )( | , ) e d
(4 )

cQ f t
s

V

W f g f r rE f r t t V
r r

π δ
π β β

−−  +
= − 

 
∫  (3.1) 

where 3d =dV x ; x is the coordinate vector of the scattering point; 1r = x  is the distance 

between the hypocenter and the scatterer; 2r = −x r  is the distance between the 

scatterer and the station; r = r ; t is the lapse time measured from the origin time of the 

earthquake; β is the average S-wave velocity; 0 ( )W f  represents the total energy 

radiated from the source within a unit frequency band around f; and ( )g f  is the total 
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scattering coefficient for the frequency f. In a constant velocity medium, the scatterers 

responsible for the generation of coda waves at a distance r and time t are contained in a 

spheroidal shell whose foci are located at the source and receiver, which is expressed by 

the term [ ]1 2(1/ ) ( ) /t r rβ δ β− +  in Eq. (3.1). The integration of Eq. (3.1) gives [18] 

 
120 0

2

( ) ( )( | , ) ( ) e
4

cQ f t
s

W f g fE f r t K a
r

π

π
−−=  (3.2) 

for a homogeneous spatial distribution of the scattering coefficient 0 ( )g f , being 

[ ]( ) (1/ ) ln ( 1) /( 1)K a a a a= + −  for a >1; / Sa t t= ; and tS the S-wave travel time. For 

a >>1 2( ) 2 /K a a≈ and therefore Eq.(3.2) becomes 

 
120 0

2 2

( ) ( )( | , ) e , ( 2 )
2

cQ f t
s S

W f g fE f r t t t
t

π

πβ
−−≈ >  (3.3) 

which corresponds to the single scattering model of Aki and Chouet (1975) [9]. 

 We divide the area under consideration into a number N of small blocks of 

volume δV, as it will be detailed later. Therefore, by multiplying the right side of Eq. 

(3.1) by the factor 1/2 for including the effect of a half space, then by integrating Eq. 

(3.1)  in the radial direction over the spheroidal shell (which radius is approximated by 

β t/2), which corresponds to the lapse time window tj±δt/2 (the magnitude of tδ will be 

computed in section 3.3), we obtain: 

 
( )

120 0
22

1 1, 2,

( ) ( )( | ) e
4

j
c j

N
Q f t ij

sa j
i i i

W f g fE f t t V
t r r

π δ
δ δ

π β
−−

=

≈ ∑  (3.4) 

where the integral has been approximated by a summation of the blocks, where each 

term corresponds to a certain block i. The sub index a in the energy density indicates the 

consideration of an average scattering coefficient g0 over the half space. δij equals 1 

when the ith block lays inside the spheroidal shell which corresponds to the j time 

window and equals zero otherwise. Nj is the total number of scatterers in each 

spheroidal shell. 

 The observed coda envelope fluctuations from the theoretical model due to the 
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non-uniform distribution of scatterers can be expressed mathematically as spatial 

perturbations of the average scattering coefficient of the medium due to an individual 

scatterer in the form: g=g0αi  ( 0iα ≥ ). Thus, the integration of Eq.(3.1) gives:  
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22
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j
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Q f t i ij
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W f g fE f t t V
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=

= ∑  (3.5) 

To obtain Eq.(3.4) and Eq. (3.5) we have assumed a constant value of Qc in the 

region, thus neglecting the effect of an spatial variation of Qc on the fluctuations of the 

coda envelope and considering that they are caused mainly by the spatial variations of 

the scattering coefficient. In order to get a system of equations that will allow us to 

estimate the spatial perturbations of the scattering coefficient we divide Eq.(3.5) by Eq. 

(3.4), 

 2
1, 2,

2
1, 2,

( ) 1
( ) ( )

( )

s j i ij

ij isa j i i

i i i

E t
E t r r

r r

α δ
δ= ∑

∑
 (3.6) 

where the left side of equation Eq. (3.6) is called coda wave energy residual (ej) and it 

measures the ratio of the observed energy density in this part of the coda to the average 

energy density of the medium. 

 If we divide the coda of one seismogram into several small time windows, we 

will have one equation based on Eq. (3.6) for each time window. Also for each time 

window, the scatterers contributing to the energy density are contained in a spheroidal 

shell. Thus, equation Eq.(3.6) can be re-written in the following form: 
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 (3.7) 

where M is the total number of equations (number of seismograms multiplied by the 

number of coda time windows considered), N is the total number of scatterers (number 
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of small blocks into which the study region is divided) and  

 2
1, 2,

2
1, 2,

1
( )

( )

ij
ij

ij i i

i i i

w
r r

r r

δ
δ=

∑
 (3.8) 

 Solving Eq. (3.7) will provide us the scattering coefficient distribution. The 

methods to solve such a system of equations will be developed in Chapter 4. 

3.3 COMPUTATION OF THE ENERGY RESIDUALS 

We will explain now in detail how to compute the energy residuals from the vertical 

component of seismograms. The steps to follow are: 

i. Extraction of frequency components from a certain frequency band, i.e, 4-10 Hz. 

This is done by using a Butterworth or Chebyshev band-pass filter. The filter has 

to be applied both forward and backward along the time axis to cause no phase 

delay.  We generated the algorithm to apply the filter by means of the software 

provided by Tony Fisher [45] in his web page. This web page is a tribute to him 

(he died on February 29th, 2000). 

ii. Computation of the rms amplitudes obs ( | , )A f r t  of the filtered traces using a 

time window for the averaging of about ten times the central period of the filter 

used [73]. The rms amplitudes for a noise window of 10 s before the P-wave 

arrival are also computed and only the amplitudes greater than two times the 

signal to noise ratio are kept. 

iii. The amplitudes are then corrected for geometrical spreading by multiplying by t2 

which is valid for body waves in a uniform medium. 

iv. The average decay curve is estimated for each seismogram by means of a least-

squares regression of ( )2
obsln | ,t A f r t    vs. t and only the estimates with a 

correlation coefficient greater than 0.70 are kept. It is convenient to consider 

starting lapse times from about 1.5-2 times [17] the arrival time of the S wave in 
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order to increase the resolution near the source region .  

v. The observed coda residuals e(t) are then calculated by taking the ratio of the 

corrected observed amplitudes to the estimated exponential decay curve.   

vi. We would like to obtain a limited number of coda residuals. So finally the 

residuals are averaged in time windows of tδ  to get ej at discrete lapse times tj. 

There is an important reason for this: we will compute the scattering coefficient 

for each block into which the study region id divided, and every block has a 

finite volume V. Then, the residuals should correspond to the energy scattered 

by a finite volume. If a wave takes a certain time to travel the volume 
1/32( )V vδτ δ�  (the factor 2 comes from considering the wave going back and 

forth during the scattering process) then we will consider only a certain number 

of residuals ( )jE t coming from the average of e(t) in a time interval ( )tδ centered 

at a discrete lapse time jt . ( )tδ  has to be similar but smaller than ( )δ τ and we 

consider 1 ( )j jt t tδ+ − = .  

All this process is illustrated in Figure 3-1 (for the 4-8 Hz frequency band) and (E) 

Figure 3-2 (for the 8-12 Hz) where we show the following: Figures (A) corresponds 

to a coda waveform of an earthquake at an epicentral distance of 1.91 km and 1.53 km 

respectively, under Galeras volcano (Colombia). Figures (B) correspond to the band-

pass filtered coda waveform of seismograms on figures (A). Figures (C) corresponds to 

the power spectrum of figures (A). Figures (D) correspond to the logarithm of the 

running mean-squared amplitudes corrected for geometrical spreading effect. The 

continuous cyan line is the best linear fitting function to the logarithmic trace. Finally, 

figure (E) corresponds to the logarithm of the coda energy residuals averaged in a time 

window of 0.5 s. 
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Figure 3-1. Analysis of event 300 recorded by the station 14 in the Galeras volcano (see appendix A).  
(A) corresponds to the raw seismogram. (B) corresponds to the filtered seismogram in the 4-8 Hz band. 
(C) is the power spectrum of the seismogram between t=3.48 s  and t=11.48 s. This lapse time 
corresponds to the one that will be used to carry out the linear regression in figure (D). First green line 
indicates st  in Figs (A-B-D) and second green line indicates 2 st in Figs (B-D). In Fig (C) green lines 
indicate the frequency band under analysis. (E) corresponds to the logarithm of the coda energy residuals 
averaged in a time window of 0.5 s. 
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Figure 3-2. Analysis of event 128 recorded by the station 14 in the Galeras volcano (see Appendix A).  
(A) corresponds to the raw seismogram. (B) corresponds to the filtered seismogram in the 8-12 Hz band. 
(C) is the power spectrum of the seismogram (A) between t=4.0 s and t=13.95 s. This lapse time 
corresponds to the one that will be used to carry out the linear regression in figure (D). First green line 
indicates st  in Figs (A-B-D) and second green line indicates 2 st in Figs (B-D). In Fig (C) green lines 
indicate the frequency band under analisys. Dashed line indicates a safe initial time to avoid side effects 
from saturation of the recorded seismogram. (E) corresponds to the logarithm of the coda energy residuals 
averaged in a time window of 0.5 s. 
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4 INVERSION METHODS 

4.1 INTRODUCTION 

As explained in Chapter 3, in order to obtain the magnitude of the scattering coefficient, 

we have to solve the system of equations: 

 

11 1 1 1 1

1 1

1 1 1

j j N N

i ij j iN N i

M j j MN N M

w f w f w f p

w f w f w f p

w f w f w f p

+ + + + =

+ + + + =

+ + + + =

" "
#

" "
#

" "

 (4.1) 

where N is the number of blocks in which the region has been divided and M is the 

number of residuals obtained from the seismograms. In our case 50000N ≈  

and 10000M ≈ . To solve such a system of equations it is not possible to use 

conventional matrix theory methods to invert the system. There are several reasons [46]. 

The most important reason is that these systems of equations are always close to 

singular. While not exact linear combinations of each other, some of the equations may 

be so close to be linearly dependent that round off errors render them linearly dependent 

at some stage in the solution process. This may make the numerical procedure to fail. If 

it does not fail, round off errors in the solution process can swamp the true solution. 

This problem particularly emerges if N is a large number (N>10)!  

 For large values of M and N there are very convenient algebraic iterative 

methods based on the “method of projections” as first proposed by Kaczmarz [47]. 

These methods have been successfully used in Computerized Tomographic (CT) 

imaging for medical applications [48]. The simplest iterative method is the so-called 

Algebraic Reconstruction Technique (ART) algorithm. Another method based on ART 

is the Simultaneous Iterative Reconstruction Technique (SIRT).  These methods are 

discussed in sections 4.2 and 4.3.  

 Algebraic methods are slow although they have some advantages discussed in 

section 4.4.7. There is a non-iterative algorithm that performs the inversion more 
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efficiently. This algorithm is the Filtered Backprojection (FBP) algorithm. This 

algorithm uses a completely different approach to carry out the inversion and the 

solution is readily obtained as a linear combination of the residuals. The theoretical 

background necessary to grasp the intuitive ideas behind the method are introduced for 

2-dimensional reconstruction problems in section 4.4.1. In section 4.5 the algorithm is 

generalized in order to carry out inversions in three dimensions.  

4.2 ART ALGORITHM 

In order to solve Eq.(4.1) we may consider the geometrical meaning of a system of 

equations. We consider a N-dimensional space. In this space, each equation represents a 

hyperplane. When a unique solution exists, the intersection of all these hyperplanes is a 

single point.  

The computational procedure to locate the solution consists of first starting with 

an initial guess, denoted by (0) (0) (0) (0)
1 2( , ,..., )Nf f f f=

G
. In most cases we simply assign a 

value of zero to all the fi’s. This initial guess is projected on the hyperplane represented 

by the first equation in (4.1) giving (1)f
G

. (1)f
G

 is then projected on the hyperplane 

represented by the second equation in (4.1) to yield (2)f
G

and so on. This is illustrated in 

Figure 4-1 for a system of two equations with two unknowns. 

When ( 1)if −
G

 is projected on the hyperplane represented by the ith equation to 

yield ( )if
G

, the process can be mathematically described by: 

 
( 1)

( ) ( 1)
i

i i i i
i

i i

f w pf f w
w w

−
− ⋅ −

= −
⋅

G GG G G
G G  (4.2) 

where 1 2( , ,..., )i i i iNw w w w=
G . To see from where Eq.(4.2) comes from we first rewrite 

the first equation of (4.1) as: 

 1 1w f p⋅ =
GG  (4.3) 
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The hyperplane represented by this equation is perpendicular to the vector 1wG  as 

can be seen in Figure 4-2. The equation (4.3) states that the length of the projection of 

the vector f
G

 on the vector 1wG has a constant length (if 1 1w =
G  then p1 is the distance of 

the plane from the origin). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1. The Kaczmarz method of solving algebraic equations is illustrated for the case of two 

unknowns. One starts with some arbitrary initial guess and then projects onto the line corresponding to 

the first equation. The resulting point is now projected onto the line representing the second equation. If 

there are only two equations, this process is continued back and forth, as illustrated by the dots in the 

figure, until convergence is achieved [48]. 

The unit vector along 1wG is given by: 

 1

1 1

wu
w w

=
⋅

GG
G G  (4.4) 
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Figure 4-2. The hyperplane 1 1w f p⋅ =
GG

 (represented by a line in this two-dimensional figure) is 

perpendicular to the vector 1wG  [48]. 

 

Then, the perpendicular distance of the hyperplane from the origin, is given by: 

 1 1

1 1 1 1

w f pu f
w w w w

⋅
=⋅ =

⋅ ⋅

GGGG
G G G G  (4.5) 

To get the projection (0)f
G

on the hyperplane, we consider the distance of (0)f
G

 

from the plane that may be written as: 

 
(0)

(0) 1 1 1

1 1 1 1

p w f pu f
w w w w

⋅ −
⋅ − =

⋅ ⋅

GGGG
G G G G  (4.6) 
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Then, the projection (1)f
G

may be written as: 

 
(0)

(1) (0) 1 1
1

1 1

w f pf f w
w w

⋅ −
= − ⋅

⋅

GGG G G
G G  (4.7) 

 For the computer implantation of this method our initial guess at the solution 0f
G

 

is a unity value to all the f0,j. The ART iteration process can be mathematically 

described by the following equation: 

 
( 1)

( ) ( ) ( 1)
i

i i i i i
j j j

i i

f w pf f f
w w

−
− ⋅ −

∆ = − =
⋅

G G
G G  (4.8) 

where 1 2( , , , )i i i iNw w w w=
G … , and the new solution ( )i

jf  is obtained from the last 

solution ( 1)i
jf − by the addition of the change ( )i

jf∆ . As already stated, every iteration has a 

geometrical meaning: in each iteration, the solution is projected in the hyperplane 

represented by each equation. Each projection becomes closer to the solution if it exists.  

4.2.1 CONVERGENCE AND CHARACTERISTICS OF THE SOLUTIONS 

An important comment about the convergence of the algorithm is in order. If the 

consecutive hyperplanes have only a very small angle between them, the rate of 

convergence to the solution might be very slow because only a small increment ( )i
jf∆ is 

added from one equation to the next one. If equations are arranged in such way that 

hyperplanes are as much orthogonal as possible, the rate of convergence becomes much 

faster. But too much orthogonalization will also tend to enhance the effects of the ever 

present measurement noise in the final solution. The rate of convergence depends also 

on the choice of the initial guess 0f
G

.  

ART reconstructions usually suffer from “salt and pepper” noise which is caused 

by the inconsistencies introduced in the set of equations by the approximations 

commonly used in the calculation of the matrix parameters. It is possible to reduce the 

effects of this noise by relaxation, in which we update a block by ( )i
jfα∆  where α is less 

than one. In some cases it is convenient to make the relaxation parameterα a function of 

the iteration number; that is, it becomes progressively smaller with increase number of 
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iterations. The resulting improvements in the quality of reconstruction are usually at the 

expense of convergence. Another method based on the ART may be considered in the 

next section 4.3 in order to minimize still more this kind of noise. 

If M>N a unique solution of the set of linear system in Eq. (4.1) does not exist, 

and, in fact, an infinite number of solutions are possible. In this case ART algorithm 

converges to a solution sf ′
G

such that 
2

(0)
sf f ′−

G G
is minimized. For an over determined 

problem, N>M, no unique solution can be found by ART. A not uncommon situation in 

image reconstruction is that of an over determined system in the presence of 

measurement noise. That is, we may have N>M and je  corrupted by noise. No unique 

solution exists in this case: the “solution” doesn’t converge to a unique point, but will 

oscillate in the neighbourhood of the intersections of the hyperplanes. 

One attractive feature of the iterative approach is that it is possible to incorporate 

into the solution some types of a priori knowledge about the scattering coefficients. For 

example, if the coefficients are known to be positive, one may set the negative 

components equal to zero.  

4.3 SIRT ALGORITHM 

The Simultaneous Iterative Reconstructive Technique (SIRT) [49] is another 

algorithm which eliminates the continual and competing block update as each equation 

is considered. Then, using the SIRT algorithm smoother and better looking 

reconstructions are usually obtained at the expense of slower convergence [50].  In each 

iteration of the SIRT algorithm, the change in each block is computed by the use of the 

same equations as in the ART algorithm (Eq. (4.8)), but before making any changes, all 

the equations are considered, and then only at the end of each iteration are the block 

values changed, the change of each cell being the average value of all the computed 

changes for that block. It is also known that SIRT algorithms perform better in extreme 

situations [51] such as uneven distribution of data, incomplete data, etc. It is also 

possible to easily incorporate constrains as positivity, limited spatial support, etc. 
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4.3.1 THE WEIGHT COEFFICIENTS ijw  

In applications like ours, requiring a large number of equations the difficulty of using 

Eq. (4.2) can be in the calculation, storage, and fast retrieval of the weight 

coefficients ijw . The number of coefficients is in our case of the order of 910 . This 

problem is somewhat eased by making approximations, such as considering ijw to be 

only a function of the perpendicular distance of the ith spheroidal shell and the centre of 

the jth cell.  

In many ART [52] and SIRT implementations to find the distribution of 

scattering coefficients the wij’s are simply replaced by 1’s and 0’s depending upon 

whether the centre of the jth block is within the ith spheroidal shell. As consequence 

extra salt and pepper noise is introduced in the reconstruction. In our calculations the 

width of the shell is smaller than the width of the blocks. Then it is important to 

calculate the fraction of volume Vij of each block lying inside the ith spheroidal shell. 

Then, instead of using Eq. (3.8) we will use the following expression for the coefficients 

wij: 

 

( )
( )2

1, 2,2

1, 2,

ij
ij

ij
j j

j j j

V
w V

r r
r r

=
⋅∑

 (4.9) 

 Also, it is important to use a relaxation parameter (λ, a factor smaller than unity 

multiplying the increment ( )i
jf∆ ) which is commonly determined by trial and error. If 

incorrectly selected, will either cause premature termination and incorrect result or, if 

number of iterations or λ too small, will result in a reconstruction lacking high-

frequency details. By trial and error we chose 0.01λ =  for about 120 iterations.
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4.4 BACKPROJECTION ALGORITHM 

We will start the derivation of the Backprojection algorithm [48,53] under the set of 

conditions as simplest as possible. These conditions will be clearly different from our 

problem’s: two-dimensional distribution, ray emitters and transducers located over 

arrays around the two-dimensional area. This initial development will be derived in 

section 4.4.1. Nevertheless, the results that we will obtain with this derivation will be 

easily extended by intuitive reasoning to the geometry of our case in section 4.5. Then, 

using this algorithm, scattering coefficients will become a weighted average value of the 

residues that correspond to a certain block. This will make this algorithm to be much 

faster than any other iterative method. Computations times will be about 100 times 

smaller than the ones for ART or SIRT and no relaxation parameter will have to be 

chosen. 

4.4.1 BACKPROJECTION ALGORITHM IN TWO DIMENSIONS WITH 
LINEAR ARRAYS OF TRANDUCERS. GEOMETRY AND 
DEFINITIONS 

We start by assuming the geometry outlined in Figure 4-3 [51]. Notice that we will use 

two set of axis: the main set (x,y) is the original set of coordinates used to describe the 

object function g(x,y). We also have a second frame (x’,y’) that takes into account the 

direction of the beams. We consider then g(x,y) (from now on it will be noted as object 

function) to be traversed by a set of parallel beams. There is a set of transducers  located 

on a line recording a “parallel projection” of g(x,y) on a line parallel to the x’ axis at an 

angle θ  from main reference frame. The coordinate systems will allow us to describe 

line integrals and projections in a simple fashion. Let us define both concepts 

rigorously. 

A line integral will represent the integral of the function g(x,y) along a line. This 

may correspond to the total attenuation suffered by a ray as it travels in a straight line 

through the object function. Each line integral may be represented by a set of two 

parameters ( ), 'xθ  because the equation of the lines describing the beams in the figure 

is: 
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 cos sinx y xθ θ ′⋅ = + =x n  (4.10) 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4-3. Illustration of the geometry of a set of parallel projection beams [53]. 

And we will use this equation to write the line integral ( )P xθ ′ as: 

 ( ) ( , )dP x g x y yθ

∞

−∞

′ ′ ′ ′= ∫  (4.11) 

Using a delta function this can be rewritten as : 

 ( ) ( , ) ( cos sin )d dP x g x y x y x x yθ δ θ θ
∞ ∞

−∞ −∞
′ ′= + −∫ ∫  (4.12) 

The function ( )P xθ ′  is the so-called Radon Transform of the object function 

g(x,y) (the graphic representation of the radon transform is called sinogram). A 

projection is formed by combining a set of line integrals. The simplest projection is a 

collection of parallel ray integrals as is given by ( )P xθ ′  for a constantθ . This is known 



 72

as a parallel projection. 

We will show now, that if we know ( )P xθ ′  for all possible values of θ  it is 

possible to estimate g(x,y) by simply performing a two-dimensional inverse Fourier-

Transform. This is done by means of the Fourier-Slice Theorem. 

4.4.2 THE FOURIER SLICE THEOREM 

The Fourier slice theorem is derived by taking the one-dimensional Fourier Transform 

of a parallel projection and noting that it is equal to a slice of the two-dimensional 

Fourier transform of the original function g(x,y). 

We start by defining the two-dimensional Fourier transform of the object 

function as:  

 ( )( , ) ( , ) exp 2 d dG u v g x y i x yπ
∞ ∞

−∞ −∞
= − ⋅∫ ∫ x u  (4.13) 

where ( , )u v=u . Likewise we define the Fourier Transform of ( ')P xθ as: 

 ( )( ) ( ) exp 2 dS w P x i wx xθ θ π
∞

−∞
′ ′ ′= −∫  (4.14) 

Using Eq. (4.11) and Eq.(4.10) in Eq. (4.14) we obtain: 

 ( )( ) ( , ) exp 2 d dS w g x y i wx x yθ π
∞ ∞

−∞ −∞
′ ′ ′ ′ ′= −∫ ∫  (4.15) 

This two-dimensional integral may be rewritten in terms of the coordinates (x,y) 

as: 

 ( )( ) ( , ) exp 2 d dS w g x y i w x yθ π
∞ ∞

−∞ −∞
= − ⋅∫ ∫ x n  (4.16) 

Note that Eq. (4.16) and Eq. (4.13) are very similar. To relate them it is 

convenient to consider polar coordinates in Eq. (4.13):  

 
cos
sin

u w
v w

θ
θ

=
=

 (4.17) 
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Then it is easy to write the following equality: 

 ( ) ( , )S w G wθ θ=  (4.18) 

This equality has a fundamental meaning: the Fourier Transform of the 

projection is identical to the spectrum of the original object function on a slice normal to 

the direction of the projection beam. This has been illustrated in Figure 4-4: 

 

 

Figure 4-4 Illustration of the Fourier Slice Theorem [53]. 

We can see then that it might be possible to recover the object function as a 

function of the projections.  

4.4.3 RECONSTRUCTION ALGORITHM FOR PARALLEL PROJECTIONS 

From Eq. (4.18) we wish now to write the object g(x,y) as a function of ( , )G w θ . This 

can be done considering the inverse Fourier transform of G(u,v) in Eq. (4.13) written in 

polar coordinates: 

 { }( )2

2 0 0

1( , ) ( , ) exp 2 cos sin d d
4

g x y G w i w x y w w
π

θ π θ θ θ
π

∞
= +∫ ∫  (4.19) 
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This integral can be split into two by considering: 

 
{ }( )

{ }( )

2 0 0

2 0 0

1( , ) ( , ) exp 2 cos sin d d
4

1 ( , ) exp 2 cos( ) sin( ) d d
4

g x y G w i w x y w w

G w i w x y w w

π

π

θ π θ θ θ
π

θ π π θ π θ π θ
π

∞

∞

= + +

+ + + + + +

∫ ∫

∫ ∫
 (4.20) 

Using the following property: 

 ( , ) ( , )G w G wθ π θ+ = −  (4.21) 

and Eq. (4.10) we obtain: 

 ( )2 0

1( , ) ( , ) exp 2 ' d d
4

g x y G w i wx w w
π

θ π θ
π

∞

−∞
= +∫ ∫  (4.22) 

This expression is now ready to include the information from the projections 

given in Eq. (4.18). Using this equation we rewrite the integral in Eq. (4.22) as: 

 ( )2 0

1( , ) ( ) exp 2 ' d d
4

g x y S w i wx w w
π

θ π θ
π

∞

−∞

 = +  ∫ ∫  (4.23) 

This integral may be expressed as: 

 ( )2 0

1( , ) cos sin d
4

g x y Q x y
π

θ θ θ θ
π

= +∫  (4.24) 

where: 

 ( )( ) ( ) exp 2 ' dQ x S w i wx w wθ θ π
∞

−∞
′ = ∫  (4.25) 

Eqs. (4.24) and (4.25) are the key result of this development. We will now 

explain the meaning of these expressions.  

Eq. (4.25) represents a filtering operation over a certain projection ( )P xθ ′ . Notice 

that the Fourier Transform of ( )P xθ ′  is ( )S wθ and that we are performing the inverse 

Fourier transform of ( )S wθ times a ramp function w .  Thus, Eq. (4.25) represents 

filtering the projection set ( )P xθ ′  with a filter with a frequency response given by w . 
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Therefore ( )Q xθ ′  is called “Filtered Projection”. It is very important now to understand 

what is ( )Q xθ ′  in the real space. Notice that a filtered projection ( )Q xθ ′ , for a certain 

value of x’, assigns the same contribution to all points (x,y) lying along the projection 

(all points on the line cos sinx y xθ θ ′+ =  ). Then we say that each function ( )Q xθ ′  is 

backprojecting a filtered projection. In Eq. (4.24) the resulting projections for different 

angles θ  are then added to form the estimate of g(x,y). We say then that Eq. (4.24) calls 

for each filtered projection ( )Q xθ ′  to be backprojected. Now, the name of the algorithm 

becomes evident. 

4.4.4 IMPLEMENTING A FILTERED-BACKPROJECTION ALGORITHM 
FOR PARALLEL DATA. 

Several problems arise when trying to implement Eq. (4.23) in a real case. First, it is 

only possible to obtain a finite number of projections. If the total number of projections 

N is large enough and the projections are distributed over 180º then Eq. (4.23) may be 

approximated as: 

 ( )
1

( , ) cos sin
i

N

i i
i

g x y Q x y
N θ
π

θ θ
=

+∑�  (4.26) 

This equation calls for the filtered projections to be backprojected over the (x,y) 

plane. Each filtered projection makes an equal contribution to each image point (x,y), 

lying along a parallel projection. However in backprojecting 
i

Qθ to a point (x,y) we need 

to know it for cos sini ix x yθ θ′ = + . However this value of x’ may not correspond to a 

known value of 
i

Qθ due to the projections being discretely sampled. It is possible to find 

a value of 
i

Qθ that corresponds to the image point (x,y) by interpolation. Linear 

interpolation is often sufficient.  

Another problem arises from the filtering of the projection. Notice that the ramp 

filter in Eq. (4.25) enhances high frequencies making this filtering process extremely 

sensitive to noise. Therefore, it is necessary to use a different filter to take this into 

account, usually a band-pass filter. There is a wide variety of choices. Two important 

examples are the Hamming window: 
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 ( ) 0.54 0.46cos
c

wH w w
w
π  

= +     
 (4.27) 

and the Butterworth filter: 

 2
1( )

1
n

c

H w w
w
w

=
 

+  
 

 (4.28) 

In the Hamming window cw  is equal to the maximum frequency the transducers 

can measure. In the Butterworth filter cw  is adjusted to filter the noise and allow the 

information of the object function to be recovered. 

Notice then that the filtered backprojection algorithm is sensitive to noise. This 

sensitivity is due to the fact that the Radon transform is a smoothing transformation, so 

taking its inverse will have the effect of amplifying noise. 

4.4.5 EXAMPLES 

A typical example of object function g(x,y) is the Shepp-Logan Phantom [54]. This 

phantom appears everywhere through the literature as a standard test for different 

reconstruction methods. It can be seen in Figure 4-5. The Radon Transform of this 

Phantom is represented in the corresponding sinogram in Figure 4-6. The horizontal 

direction corresponds to θ  and the vertical direction corresponds to x’. Then in Figure 

4-7, we show the reconstruction process as a function of the number of projections used 

using a ramp filter. We can see that for a low number of projections artefacts appear in 

the reconstruction image, we say that there is aliasing due to insufficient angular 

sampling. Those artefacts tend to disappear as the number of projections increases.  
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Figure 4-5. Shepp-Logan Phantom [55]. Figure 4-6. Sinogram of the Shep-Logan Phantom [55]. 

 

 

 

 

 

 

 

 

 

 

Figure 4-7. Reconstructions for (left to right up to down) N=1, 4, 8, 16, 32, 64 and 128 projections [55]. 
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If the object function contains a sharp change between two regions one with 

important values and another with low values the aliasing effects might be even visible 

for a reconstruction with a large number of projections. This is shown in Figure 4-8 for 

N=256 projections. The characteristics of the reconstructed phantoms we may be 

considered to be analogous to reconstructions in the three-dimensional case. 

Figure 4-8. Aliasing effects [55]. 

4.4.6 CONNECTION BETWEEN ART AND BACKPROJECTION. A SIMPLE 
EXAMPLE. 

ART and Filtered Backprojection algorithms seem to be very different and unconnected 

methods. We will show with a simple example [56] that some similarities exist between 

both methods. To do this let us consider a very simple example of use of the ART 

algorithm. Let's assume we use a scanner whose beam scans the sample only along two 

perpendicular axes. The two-dimensional sample area is divided into a grid of four by 

four pixels. The embedded object we are interested in absorbs stronger than the matrix 

and is placed at location [1,1] (numbering the pixels from zero to three). The figure 

shows the true object. In the real experiment, this is what we would ideally want to 

measure 

 

 

Figure 4-9. Object to be measured [56] 



 79

In the experiment, the sample is scanned horizontally and vertically at each row 

and column of pixels, respectively. The measured value (photon count) is lower in the 

row(s) and column(s) containing the absorbing object. 

 

Figure 4-10. Projection process [56]. 

To start the reconstruction, each pixel is initialized with the average intensity 

collected over the whole sample area. 

 

Figure 4-11. Initial Solution [56] 

The first iteration takes into account the horizontal readings only. Using Eq.(4.7) 

the absorptivity value of each pixel is corrected by the path-length weighted absorption 

of its row (this is the meaning of wG  in this case). Note that the correction is the same 

one for all the pixels of the row. We may say then that the correction is being 

“backprojected” to the entire row.  

 

Figure 4-12 Result of the first iteration [56]. 

The second iteration improves the image by taking into account the vertical 

readings. The absorptivity value of each pixel is corrected by the path-length 
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weighted absorption of its column. Note that, as before, the correction is the same for 

each pixel along the beam path. Because the absorptivity of the pixels before this 

iteration was different, the corrected absorptivity is also different as can be deduced 

from Eq. (4.8) that takes into account the previous correction. This is a important 

difference between ART and FBP. In the Filtered Backprojection Algorithm each 

projection is considered to be an independent measurement and it is independently 

backprojected. In ART each backprojected “projection” depends on the others in order 

to try to solve the system of equations.  

 

Figure 4-13 Result of the second iteration [56]. 

Compare the original sample in Figure 4-9 with the image obtained in Figure 4-

13. Obviously, the algorithm underestimates the absorptivity of the object and also of 

the matrix in general, but those pixels in the matrix which are located in the same row 

or column as the object are coming out too dark. In effect, the object smears out along 

the beam paths used. The image doesn't change if more iterations are applied because 

the two sets of beam paths are orthogonal. What's needed is information on the sample 

from a variety of angles. Then the image can be updated with the information obtained 

from each beam. The smearing-out effects, which persist for any single beam, cancel 

out because the beams are no longer orthogonal. This is true for both ART and FBP. 

We are going to generalize now the results we have derived for two dimensional 

reconstructions to 3 dimensions.  

4.4.7 BACKPROJECTION ALGORITHM VERSUS ART AND SIRT 

Backprojection algorithm is a computationally efficient method and it is used in most 

commercial medical scanners in CT applications and has proved to be extremely 

accurate and amenable to fast implementation. Backprojection algorithm is then much 

faster than ART or SIRT and it is able to provide high quality reconstructions. When the 
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three methods are compared for CT applications, ART and SIRT have a better noise 

tolerance, and needs fewer projections and perform better when handling for non-

uniformly distributed data sets under the condition that angles between projections are 

not larger than about 20 degrees. Although ART and SIRT may provide sometimes 

better reconstructions, they are extremely slow and then they are only used for academic 

purposes or to enhance the quality of a certain reconstruction if an extra amount of time 

is available.  

When the algorithms are compared in other applications, as imaging by 

transmission measurements using a thermal neutrons to determine water content, cracks 

and homogeneity in concrete samples the conclusions are different [57]. In this case the 

Filtered Backprojection produces images of higher contrast, more smoothing and 

slightly better resolution than those obtained using iterative algebraic methods. 

4.5 BACKPROJECTION ALGORITHM TO FIND 3D 
DISTRIBUTIONS OF SCATTERING COEFFICIENTS  

Let us now write the results from section 4.4.1 in a general way. In Figure 4-3 there is 

an outline of a measurement process. The measured data set has been called projection. 

Each projection is a set of numbers. Each number corresponds to an integral of a certain 

property over a certain region of a certain object function. From the data of all the 

projections it is possible to reconstruct the original object function. To do this we only 

have to perform the following process. Firstly, to filter the data corresponding to a 

certain projection with a ramp filter or some other filter if there is a non-negligible 

amount of noise in the projection data. Secondly, to backproject the projections one by 

one. This means to assign each measured number of a certain projection to the region it 

was coming from. All the data corresponding to a certain pixel or block is then averaged 

in order to obtain the reconstruction value. From this conclusion, that has been written 

in a way as general as possible we may derive now an inversion process from the 

residuals obtained from seismograms. 

Let us analyze the meaning of the set of residuals obtained from a certain 

seismogram. We will show now that a set of residuals from a certain seismogram is 

analogous to a filtered projection. Each residual corresponds to an average value of the 
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scattering coefficient in a certain region of the space (a thin volume between two 

spheroidal shells). The residuals come from seismograms that have been previously 

filtered by a band-pass Butterworth filter. Then the set of residuals from a certain 

seismogram are completely analogous to a filtered projection.  

To obtain the scattering distribution we will just have to backproject each 

residual to the corresponding spheroidal region. Finally, the scattering coefficient in a 

block is obtained by averaging all the residuals corresponding to that block. Block by 

block the full distribution is obtained. We notice here that the average will become a 

weighted average due to the fact that the geometry of our inversion problem is different. 

The exact expression to calculate the inversion from the residuals will be now derived. 

We start by considering a set of 1, 2,...,k K= events that have happened in a certain 

region. The region is divided in N blocks (identified by a subindex j) and L 

seismometers (identified by the subindex l). The correspondence between the 

coefficients and the residuals are established following several steps: 

i) For each earthquake k, the travelling time of the signal from the source to the 

jth block plus the travelling time from the jth block to each seismograph l is 

computed. This time will be noted as Tjkl. With this data we define the 

corresponding spheroidal surface that we note as Sjkl. The centre of the kth 

block lies on Sjkl and the location of the seismograph and the hypocenter are 

the corresponding focus of the spheroid. Note that every block defines a 

different spheroidal surface for the same seismograph and hypocenter. 

ii) The corresponding magnitude of the residuals for each earthquake k and 

each seismograph l at the time Tjkl is computed by simple linear interpolation 

(we have the magnitudes of the residues only for certain times, as already 

stated in section 3.3). We note this magnitude as R(Tjkl). 

iii) The contribution of each block is proportional to ( )2

1, 2,1/ j jr r . This 

geometrical factor indicates whether the contribution of a certain block is 

more important or less important than the contribution of other blocks on the 

spheroidal surface Sjkl. Therefore we have to consider a normalized weighted 

linear combination of residues in order to compute the corresponding 
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scattering coefficient for each jth block. Thus the magnitude of the scattering 

coefficient should be written as: 

 
( )jkl jkl

k l
j

jkl
k l

w R T
f

w
=

∑∑

∑∑
 (4.29) 

The problem now is to find a suitable definition for the weights jklw . An 

important fact that has to be taken into account is that each weight in Eq. (4.29) 

corresponds to a different spheroidal surface. The importance of the contribution 

depends on the magnitude of ( )2

1, 2,1/ j jr r  on each spheroidal surface. In order to 

normalize the importance of the weights for each spheroidal surface we consider that a 

good definition for the weights jklw in Eq. (4.29)  would be: 
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where ( ) ( )2 2

1, 2,1 1
jkl

j j
S

r r is the average value of ( ) ( )2 2

1, 2,1 1j jr r on the surface jklS . 

Note that this definition (that may be considered as inspired in Eq. (3.8)) is very 

convenient since an analytical expression will be written for the average value. Note 

also that Eq. (4.30) makes the weights only depend on the time jklT  and the position of 

the jth block, the lth seismograph and the kth hypocenter. This is a quite important point 

in order to perform a very fast calculation. We will now derive an explicit analytical 

expression for Eq. (4.30). 

We start by writing the average value as a two-dimensional integral: 

 ( ) ( ) ( ) ( )2 2 2 2

1, 2, 1, 2,
11 1 1 1

jkl
jkl

j j j j
S jkl S

r r r r dS
A

= ∫  (4.31) 

where Ajkl is the area of Sjkl. This integral is analogous to the one solved in section 2.4.1. 

Using the same spheroidal coordinates and taking into account that r is the distance 
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between the two centres (hypocenter and station) and that we must use jklT  instead of t 

in Eq. (2.10) we may rewrite the integral in Eq. (4.31)  as: 

 ( ) ( ) ( )
2 2 2 1

, , 2 32 2 20 1
1 2

1 2 11 1 d d
jkl

i j i j
S jkl

r r
A r

π
ξ ξ

ξ ξ−
+ =

−∫ ∫  (4.32) 

Solving it we obtain: 

 ( ) ( )2 2

1, 2,
41 1 ln

jkl

jkl
j j

jkl jklS

vT r
r r dS

rvT vT r
π  +

= ⋅   − 
∫  (4.33) 

We need now to write a expression for the area of the spheroidal shell jklS . There 

are two types of spheroidal shells, prolate spheroidal shells and oblate spheroidal shells, 

as can be seen in Figure 4-14. The corresponding equation for both types of spheroids is 

the same one: 

 
2 2 2

2 2 2 1x y x
a b b

+ + =  (4.34) 

where a and b are the length of the semi-axis. For the prolate spheroid (a > b) and looks 

like a rugby ball and for the oblate spheroid (a < b) and can resemble a disk. Although 

the equation describing both spheroids is the same one, the expression for the area of 

the corresponding surface is different and care should be taken choosing the right one. 

We are interested in the area of the prolate spheroidal shell. It can be written as: 

 2 22 arcsinabA a ππ ε
ε

= +  (4.35) 

where a and b are the major and minor semiaxes and ε  is the eccentricity of the 

spheroidal shell and can be written as: 

 
2 2b a
b

ε −
=  (4.36) 
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Figure 4-14. Prolate spheroid (left) and oblate spheroid (right) [58]. 

Taking into account the following identities: 
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and using them in Eq.(4.36) we obtain: 

 
jkl

r
vT

ε =  (4.38) 

Combining Eqs. (4.37) and (4.38) in Eq. (4.35) we may then write: 

 
( ) ( )

2

2 2 2 2 2
1

arcsin
2

jkl

jkl jkl jkl jkl
jkl

r vT
A v T r v T r vT

r vT
π

 − 
= − + 

 
 

 (4.39) 

And by using Eq. (4.39) in Eq.(4.30), we finally obtain the expression we were looking 

for: 
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Note that this expression depends only on v, Tjkl, r (distance between hypocenter 

and seismometer) and r1,j and r2,j.  
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5 SPATIAL DISTRIBUTION OF SCATTERERS IN THE 

CRUST OF GAURIBIDANUR SEISMIC ARRAY 

REGION (SOUTHERN INDIA)  

5.1 INTRODUCTION 

The three-dimensional spatial distribution of relative scattering coefficients in southern 

India is going to be estimated by means of an inversion technique applied to coda wave 

envelopes. The inversion technique implies mainly two steps. First we will follow the 

development outlined in Chapter 3. In this chapter we showed that to carry out the 

inversion it is necessary to solve a system of linear equations where the independent 

coefficients are the energy residuals computed from the seismograms, the unknowns 

correspond to the scattering coefficients in a certain small volume of the region under 

study, and the coefficients of each unknown indicate the importance of each small 

volume in the computation of a certain residual. This system of equations is huge and 

the number of unknowns and the number of equations is of the order of 510 .  

There are several methods to invert such a system. Some of them are outlined in 

Chapter 4. For the first time in this kind of seismological research we will solve the 

system of equations by means of the Simultaneous Iterative Reconstruction Technique 

(SIRT) and Filtered Back-Projection method (FBP). Both algorithms are commonly 

used in biomedical applications but they have not been used previously to find spatial 

distribution of relative scattering coefficients. 

SIRT algorithm has been previously described in section 4.3. SIRT allows to 

obtain more exact solutions than ART but it is slower. The Filtered Backprojection 

method was described in section 4.4 and its use to seismology was developed in section 

4.5. It was shown to be much faster than any other non-iterative algorithm because each 

scattering coefficient can be simply computed as a weighted average of certain number 

of residuals. Filtered Backprojection has proved to provide very accurate 

reconstructions in biomedical applications and we will show that this is also valid in 

seismological applications.  
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Figure 5-1. Geometry and location of stations of Gauribidanur seismic array [58] . 

5.2 GEOLOGICAL SETTING  

The Gauribidanur seismic array is located in the Indian peninsula, about 90 km north of 

Bangalore, on the western flank of the eastern Dharwar craton which is one of the oldest 

geological provinces in southern India as sketched in Figure 5-2. The region, as can be 
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seen in Figure 5-3, is divided into the western (which is composed of old gneisses and 

greenstones with very few granites) and eastern (which is made of younger rocks with 

widespread N-S elongate plutons of late Archean granites) parts by the 400 km long and 

20-30 km wide, north-south trending granitic intrusion named Closepet batholith 

(Moyen et al., 2003, [59]).  We are going now to describe with a certain detail the main 

characteristics of the Dhawar Craton and the Closepet Batholith. 

Figure 5-2. General geological sketch map of southern India. DVP, Deccan volcanic province; WDC, 

western Dharwar craton; EDC, eastern Dharwar craton; SIGT, south Indian granulite terrain; EGGT, 

eastern Ghat granulite terrain; CPG, closepet granite; CB, Cuddapah basin; PC, Phanerozoic sedimentary 

cover. Dotted line indicates Fermor’s line (boundary between Dharwar craton and south India granulite 

terrain). (From Tripathi and Ugalde, 2004, [60]). 
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Figure 5-3. Detailed geological map corresponding to the eastern and western Dhawar craton and the 

Closepet granite batholit [61].  

5.2.1 CLOSEPET GRANITE BATHOLIT 

A batholith is a large emplacement of igneous intrusive (also called plutonic) rock that 

forms from cooled magma deep in the earth's crust. Igneous rocks are formed when 

magma cools and solidifies, with or without crystallization, either below the surface as 

intrusive (plutonic) rocks or on the surface as extrusive (volcanic) rocks. This magma 

can be derived from either the Earth's mantle or pre-existing rocks made molten by 

extreme temperature and pressure changes. The word "igneous" is derived from the 

Latin ignis, meaning "fire". Batholiths are almost always made mostly of felsic (silicate 

minerals or rocks) such as granite. 

Although they may appear uniform, batholiths are in fact structures with 

complex histories and compositions. They are composed of multiple masses, or plutons, 

of magma that travelled toward the surface from a zone of partial melting at the base of 

the earth's crust. While moving, these plutons of relatively buoyant magma are called 

plutonic diapirs. Because the diapirs are liquefied and very hot, they tend to rise through 

the surrounding country rock, pushing it aside and partially melting it. Most diapirs do 
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not reach the surface to form volcanoes, but instead slow down, cool and usually 

solidify 5 to 30 kilometres underground as plutons (hence the use of the word pluton; in 

reference to the Roman god of the underworld Pluto). 

A batholith is formed when many plutons converge together to form a huge 

expanse of granitic rock. Some batholiths are found paralleling past and present 

subduction zones and other heat sources for hundreds of kilometres in continental crust. 

An example of batholith, found predominantly in the mountains of western Canada, 

extends for 1,800 kilometres and reaches into south-eastern Alaska. 

The word batholith is used by geographers to mean an exposed area of mostly 

continuous plutonic rock that covers an area larger than 100 square kilometres. 

However, the majority of batholiths visible at the surface (via outcroppings) have areas 

far greater than 100 square kilometres. These areas are exposed to the surface through 

the process of erosion accelerated by continental uplift acting over many tens of 

millions to hundreds of millions of years. This process has removed several tens of 

kilometres of overlying rock in many areas, exposing the once deeply buried batholiths. 

Batholiths exposed at the surface are also subjected to huge pressure differences 

between their former homes deep in the earth and their new homes at or near the 

surface. As a result, their crystal structure expands slightly and over time. This 

manifests itself by a form of mass wasting called exfoliation. This form of erosion 

causes convex and relatively thin sheets of rock to slough off the exposed surfaces of 

batholiths (a process accelerated by frost wedging). The result is fairly clean and 

rounded rock faces.  

The Closepet granite in southern India, is a large (400 km long but only 30km 

wide) elongate Late Archean granitic body. The Closepet granite was emplaced 

syntectonically whithin an active strike-slip shear zone. Structural levels from deep 

crust to upper levels crop out (see Figure 5-4). Despite local petrographic 

heterogeneities, a physical continuity of the porphyritic monzogranite can be observed 

all over the closepet structure. Consequently, the Closepet granite appears as a single 

magmatic body but different zones may be identified.  Differential erosion has exposed 

it from the lower (25 km) to upper crust (5 km).   
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Four main parts are recognized from bottom to top (see Figure 5-4):  

i. The root zone is located south of 13°N.  In the root zone, magmas were 

formed, collected and rose within active shear zones. The surrounding crust 

was highly ductile, leading to diffuse deformation. The root zone consists in 

a network of small dykes, plugs and sheets of granitoids injected in ductile 

shear zones and along foliation planes into Peninsular Gneisses. A wide 

range of magma compositions are found there, from monzonites (SiO2= 

51%) to granites (SiO2= 75 %). It has been demonstrated that all magmatic 

facies result from magma mixing between a mafic, mantle-derived one, and 

a felsic one, generated by anatexis (partial melting of rocks, especially in the 

forming of metamorphic rocks) of the surrounding peninsular Gneisses. 

ii. A transfer zone, where the magma was progressively enriched in K-feldspar 

phenocrysts during its ascent. In this part, the granite rose as a mush moving 

as a whole within a less ductile crust. Slow cooling was responsible for a 

long magma residence time under conditions favouring to fabric 

enhancement and strain partitioning, leading to horizontal and vertical melt 

migration. There, a single, continuous mass (150 x 30 km) of porphyritic 

monzogranite (SiO~= 65-70 %) intrudes the gneissic basement. The 

monzogranite results from magma mixing recognized in the root zone. In 

some narrow areas, corresponding to high strain zones on its margins, the 

Closepet granite is rich in enclaves of cumulate, mafic magmatic facies 

similar to those observed in the root zone. All these enclaves were carried 

upwards from deeper crustal levels. The same areas also commonly show K-

feldspar phenocrysts accumulations. 

iii. A "gap" (dyke complex that acted as a filter zone), were the ascent of the 

mush was stopped, probably due to high phenocryst load and high viscosity 

contrast with the wall rocks. Only crystal-poor melts could continue their 

ascent through the dykes. The ascent of the mush is stopped at a level 

corresponding to the gap. At this level, only crystal-poor liquids are able to 

rise through a network of dykes, leaving below most crystals, and enclaves 

of all kinds.  
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iv. A zone of shallow intrusions, where the liquids extracted from the mush 

filled small, elliptical plutons, cooling quickly and developing only very 

weak fabrics. The Closepet granite appears as a suite of small (commonly 

10-30 km long), elliptical plutons crosscutting an gneissic basement. 

Individual intrusions display mutually cross-cutting relationships. In this 

area, only homogeneous, enclave-free granites (SiO2= 70-75 %) are found, 

at the exclusion of less differentiated facies. Porphyritic facies are rare, in 

marked contrast to the lower levels, where these facies are ubiquitous. 

 

 

Figure 5-4. Sketch drawing of the emplacement mode and strain partitioning in the Closepet granite at 

contrasted structural levels (Moyen, 2000). Black, thin arrows correspond to melt movement. White, large 

arrows: kinematics of deformation. Notice three different zones may be defined along the batholit [59]. 

5.2.2 GENERAL CHARACTERISTICS OF CRATONS. THE DHAWAR 
CRATON 

The continental crust is the layer of granitic, sedimentary and metamorphic rocks which 

form the continents and the areas of shallow seabed close to their shores, known as 

continental shelves. It is less dense than the material of the Earth's mantle and thus 

"floats" on top of it. Continental crust is also less dense than oceanic crust, though it 
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is considerably thicker; 20 to 80 km versus the average oceanic thickness of around 5-

10 km. About 40% of the Earth's surface is now underlain by continental crust. 

As a consequence of the density difference, when active margins of continental 

crust meet oceanic crust in subduction zones, the oceanic crust is typically subducted 

back into the mantle. Because of its relative low density, continental crust is only rarely 

subducted or re-cycled back into the mantle (for instance, where continental crustal 

blocks collide and overthicken, causing deep melting). For this reason the oldest rocks 

on Earth are within the cratons or cores of the continents, rather than in repeatedly 

recycled oceanic crust; the oldest continental rock is the Acasta Gneiss at 4.01 Ga, while 

the oldest oceanic crust is of Jurassic age. 

A craton is then an old and stable part of the continental crust that has survived 

the merging and splitting of continents and supercontinents for at least 500 million 

years. Cratons are generally found in the interiors of continents and are formed of a 

crust of lightweight felsic igneous rock such as granite attached to a section of the upper 

mantle. A craton may extend to depth of 200 km. 

Cratons are subdivided geographically into geologic provinces, each province 

being classified as an Archon, a Proton or a Tecton according to its age: Archons: 

consist of rocks from the Archean era, older than 2.5 billion years (2.5 Ga). Protons: 

consist of rocks from the early to middle Proterozoic era, older than 1.6 Ga. Tectons: 

consist of rocks from the late Proterozoic era, with ages between 1.6 Ga and 800 million 

years (800 Ma). The Dhawar Craton belongs to the Archean era (3.5-2.6 Ga). 

As minerals (such as precious metals and diamonds) in the earth's crust tend to 

become separated with time, the oldest cratons are of the greatest interest to mining 

companies. This also applies to the Dhawar Craton; actually, mostly, our data comes 

from chemical explosions in mines).  

The Dhawar craton is classically divided into three litological units: 

i. A gneissic basement of peninsular gneisses dated between 3.3 and 2.7 Ga. 

Gneiss is a common and widely distributed type of rock formed by high grade 

regional metamorphic processes from pre-existing formations that were 

originally either igneous or sedimentary rocks. Gneissic rocks are coarsely 
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foliated (typically by compositional banding due to segregation of mineral 

phases) and largely recrystallized. Gneisses that are metamorphosed igneous 

rocks or their equivalent are termed granite gneisses, granodiorite gneisess, etc. 

The word "gneiss" is from an old Saxon mining term that seems to have meant 

decayed, rotten, or possibly worthless material. 

ii. Greenstone belts overlying the gneisses, dated between 3.3 and 3.1 Ga for the 

oldest ones, and between 3.2 and 2.7 Ga for the younger ones. Greenstone is a 

non layered metamorphic rock derived from basalt or similar rocks containing 

sodium-rich plagioclase feldspar ( 3 8NaAlSi O (Albite)- 2 2 8CaAl Si O (Anorthite)), 

chlorite ((Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6.), epidote (Ca2(Al, 

Fe)3(SiO4)3(OH)) and quartz. Chlorite and epidote give the green colour. 

iii. Late Archean K-rich granitoids, consisting of N-S elongate bodies, among 

which the Closepet granite is the most spectacular. Several of these granites 

have been dated in the range 2.5 -2.6 Ga. Granite is a common and widely-

occurring type of intrusive felsic igneous rock. Granites are usually a white or 

buff colour (a pale, light, or moderate yellowish pink to yellow) and are medium 

to coarse grained, occasionally with some individual crystals larger than the 

groundmass forming a rock known as porphyry. Granites can be pink to dark 

grey or even black, depending on their chemistry and mineralogy. Outcrops of 

granite tend to form tors (large hill, usually topped with rocks), rounded massifs, 

and terrains of rounded boulders (large rounded masses of rock lying on the 

surface of the ground or embedded in the soil) cropping out of flat, sandy soils. 

The Dhawar craton is subdivided into western and eastern parts. The western 

Dhawar craton is made of 3.0-3.3 Ga old gneisses and greenstones, with very few 2.5 

Ga granites; on the other hand, the eastern Dhawar Craton is made of younger (2.7-3.0 

Ga) rocks with widespread elongate plutons of Late Archean granites. The Closepet 

granite represents the boundary between the two parts. 

5.2.3 CHARACTERISTICS OF GAURIBIDANUR ARRAY’s SURROUNDING 
REGION 

The area around the array is relatively flat (average elevation about 750 m), with a few 

hill ranges towards the east and the south. The rocks beneath the array are gneisses 
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and granites of Archean age. A thin layer of soil varying in thickness from 1.5 m to 4.5 

m covers the siting area. Thus, the topographic influence on scattering would be very 

small. A crustal model consisting of a 16 km thick top granitic layer over a second layer 

19 km thick above the mantle (i.e. with the Moho at 35 km depth) was proposed by 

Arora (1971) [62]. (Table 5-1). 

5.3 DATA DESCRIPTION  

Waveform data used consisted of selected 636 vertical-component, short period 

recordings of microearthquake codas from shallow earthquakes recorded by the 

Gauribidanur seismic array (GBA). They were selected from 80 earthquakes with 

epicentral distances up to 120 km which were recorded by the GBA in the period 

January 1992 to December, 1995. GBA is a seismic array that was sponsored by the 

U.K. Atomic Energy Authority (UKAEA) in the early sixties with the cooperation of 

the Bhabha Atomic Research Centre (BARC), Government of India. The array is L-

shaped and each arm contains ten short-period (T0=1 s) vertical-component Wilmore 

MkII seismometers spaced at intervals of about 2.5 km. The output of each instrument 

is carried by a telemetry system to a central laboratory where it is digitized at a 

sampling interval of 0.05 s and it is recorded in analog form on a 24-channel FM 

magnetic tape. All the events are shallow (depths less than 10 km) and local magnitudes 

range between 0.3 and 3.7 (see Figure 5.5). 

5.4 DATA ANALYSIS  

Each seismogram was bandpass-filtered over the frequency bands 1-2 (1.5±0.5) 

Hz, 2-4 (3±1) Hz and 4-10 (7±3) Hz. Then, the rms amplitudes obs ( | , )A f r t  were 

calculated by using a 0.25 s spaced moving time window of length t±2 s, t±1 s, and 

t±0.5 s for the first, second and third frequency band, respectively. The time interval for 

the analysis started at 1.5 times the S-wave travel times (in order to increase the 

resolution near the source region) and had a maximum length of 20 s (to minimize the 

effects of multiple scattering). The rms amplitudes for a noise window of 10 s before 

the P-wave arrival were also computed and only the amplitudes greater than two times 
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the signal to noise ratio were kept. The amplitudes were then corrected for geometrical 

spreading by multiplying by t2 which is valid for body waves in a uniform medium. 

Then, the average decay curve was estimated for each seismogram by means of a least-

squares regression of ( )2
obsln | ,t A f r t    vs. t and only the estimates with a correlation 

coefficient greater than 0.60 were kept. The observed coda residuals e(t) were then 

calculated by taking the ratio of the corrected observed amplitudes to the estimated 

exponential decay curve. Finally the residuals were averaged in time windows of 

tδ =0.5 s to get ej at discrete lapse times tj. The decrease of tδ increases the spatial 

resolution, but also the size of the inversion problem.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5. Map of southern India showing the location of the seismic stations and earthquakes used for 

the analysis [60].  
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The time window for the averaging must also satisfy the condition ( )1/32 /t Vδ δ β≤ , 

where δV is the volume of one small block into which the study area is divided and 

β=3.65 km·s-1 in this region (Arora, 1971, [62]; Krishna & Ramesh, 2000, [63]). This 

condition assures that the width of each spheroidal shell is smaller than the size of a 

block. All this process is illustrated in Figure 5-6 where we show the following: Figure 

(a) corresponds to a band-pass filtered coda waveform of an earthquake at an epicentral 

distance of 90.6 km in a region around Gauribidanur array (India). Figure (b) 

corresponds to the logarithm of the running mean-squared amplitudes corrected for 

geometrical spreading effect. The discontinuous line is the best linear fitting function to 

the logarithmic trace. Finally, figure (c) corresponds to the logarithm of the coda energy 

residuals averaged in a time window of 0.5 s. 

The corresponding system of equations to solve is (see Chapter 3):  

 

11 1 1 1 1

1 1

1 1

i i N N

j ij i Nj N j

M iM i NM N M

w w w e

w w w e

w w w e

α α α

α α α

α α α

+ + + + =

+ + + + =

+ + + + =

" "
#

" "
#

" "

 (5.1) 

In this case, the system has a number of equations 2700M �  for the frequency 

bands centred at 1.5 Hz and 7 Hz, and 5200M �  equations for the 3 Hz centre 

frequency. To write the system, we considered a 155 km x 155 km in horizontal and 80 

km in depth study region attending to the stations and hypocenters distribution and it 

was divided into N=50 x 50 x 25 blocks. This means we have N=62500 unknowns in 

Eq. (5.1). To write the system, it is important also to know the velocity of S waves. 

Then, the observational system of equations (Eq. (5.1)) was created by assuming the 

layered velocity structure by Arora (1971, [62]) (see table Table 5-1) and it was solved 

using the SIRT and FBP algorithms (see Chapter 4).   
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Figure 5-6 Illustrating the process to calculate the coda energy residuals for a GBA seismic event 
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Depth (km) S-wave velocity (km/s) 

0<z<15.8 3.46 

15.8<z<34.7 3.96 

z>34.7 4.61 

Table 5-1. S-wave velocity model for the Gauribidanur  region. 

5.5 RESULTS 

Before discussing the results, we will examine the reliability of the solution. Figure 5-7 

plots the hit counts, or number of coda residuals contributed by each block, that shows 

which grid zones may be affected by sampling insufficiency for the grid defined. It can 

be observed that the entire region is sampled by the ellipses, however, the hit counts are 

much less in an area close around the array and they increase both in horizontal and 

depth directions up to the considered depth of 80 km. This happens because the stations 

are concentrated in a small area, which makes all the blocks which are close to the array 

to correspond to short lapse times, and they are few because we omitted the earliest 

portion of the S-wave coda by adopting 1.5tS as start time for the analysis.   

On the other hand, we tested the resolution of the inversion methods by 

synthesizing the coda energy residuals from the observational equation using a given 

test distribution of scattering coefficients and the same distribution of stations and 

events used in the analysis. We generated vertical structures with positive perturbations 

of the scattering coefficient with horizontal dimensions equal to one block and depths 

up to 80 km embedded in a non perturbed medium. 

 Then the synthesized residuals were inverted. Results show that although the 

vertical structures are seen almost up to the maximum depth considered of 80 km, they 

are well reproduced (more than 50% of the perturbation value is returned) only up to the 

seventh block (22.4 km). The results are shown in Figure 5-8. 
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Figure 5-7. Hit counts or number of coda residuals contributed by each block. It measures the number of 

times each block is sampled by the scattering shells of observed coda data. The darker areas are the zones 

lesser sampled by the spherical shells. 
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Figure 5-8. Spatial distribution of relative scattering coefficients for a synthetic test consisting of a 

column. It was located northeast from the array centre point, which is shown by a solid triangle. A 

longitudinal section corresponding to z=0 km and the corresponding transversal section are shown. 
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Figure 5-9. Spatial distribution of relative scattering coefficients for different depths and for the two 

inversion methods used: (a) results for the frequency band 1-2 Hz; (b) 2-4 Hz; and (c) 4-10 Hz.The 

lightest zones indicate the strongest perturbations from an average scattering coefficient. 
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Figure 5-9. (continued) 
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Figure 5-9. (continued) 
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The resulting distribution of relative scattering coefficients 0

0

1 g g
g

α −
− =  in the study 

region for the three analyzed frequency bands and for different depths is plotted in 

Figure 5-9. The lightest tones indicate scattering coefficients larger than the average in 

this region. 

5.6 DISCUSSION  

It can be observed that we obtain practically the same distribution of relative scattering 

coefficients regardless of applying the SIRT or FBP inversion algorithms. Whereas the 

SIRT algorithm provides slightly lower values of the relative scattering coefficients, the 

FBP method provides more contrast. Thus, we would recommend the use of the FBP 

method, which requires much lesser (about 100 times) computation time. 

 On the other hand, Figure 5-9 shows that more than the 90% of the analyzed 

region reveals a spatial perturbation of the scattering coefficient between ±25%. This 

means that the crust around GBA presents a remarkably uniform distribution of 

scattering coefficients. For low frequencies, this uniformity is broken by the presence of 

a strong scattering area which is recognized from the surface up to a depth of 24 km just 

below the array. This structure is not observed at high frequencies. In fact, each 

analyzed frequency band is giving us information about inhomogeneous structures with 

sizes comparable to the seismic wavelengths (~1.8 to ~3.6 km for 1-2 Hz, ~900 m to 

~1.8 km for 2-4 Hz, and ~360 m to ~900 m for 4-10 Hz in this case). Figure 5-10 shows 

a cross section of relative scattering coefficients shown in Figure 5-9 projected onto the 

vertical plane defined by the parallel of the array centre point. It can be observed that 

the strongest scatterers are located on the western part of GBA. However, Figure 5-9 

and Figure 5-10 show that the heterogeneity follows an ellipsoidal pattern. This may 

happen because this area is poorly sampled by the ellipses as previously discussed in 

Figure 5-7, however, the behaviour is only observed for the lowest frequency band 

analyzed. In fact, we detected high values of the residuals at low frequencies and short 

lapse times. In order to establish the validity of the results of this study we tested the 

inversion method by means of a synthetic test.  
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Figure 5-10. Vertical cross section of relative scattering coefficients at the parallel 13.6º, which 

corresponds to the latitude of the array cross-point. 
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Because the most notable geological feature in the considered region is the 400 km long 

and 20-30 km wide, north-south trending Closepet granitic intrusion, we simulated the 

existence of a single spheroidal structure with positive perturbations of the scattering 

coefficient at different locations in a non-perturbed medium. 

Results of the inversion of the synthesized residuals are shown in Figure 5-11. It 

can be observed that the patterns of the test are well reproduced. We may then conclude 

that the scattering region observed near the array centre point (Figure 5-9) is neither a 

ghost image nor a mathematical artefact. Thus we may consider that the inversion 

method may reproduce up to a certain extent the observed data. 

 With respect to the uniform distribution of scattering coefficients, our results are 

in accordance with previous studies performed in the region. In an early work in this 

region using statistical analysis of observed teleseismic traveltime residuals, Berteussen 

et al. (1977) [64] remarked that the area on which GBA is sited presents exceptionally 

homogeneous structures, apart from the general existing velocity perturbations of the 

order of a few percent. This conclusion was partly supported by Mohan & Rai (1992) 

[58], who also detected the presence of a prominent scatterer in the deep crustal and 

uppermost mantle level (30-55 km) in this region from a semblance technique analysis. 

The scattering region coincided with the Closepet granitic intrusion in the region. 

Krishna & Ramesh (2000) [63] performed a frequency-wavenumber (f-k) spectral 

analysis of P-coda waveforms to mine tremors and explosions recorded at GBA array. 

They found a near-on azimuth dominant energy peak with apparent velocity appropriate 

to the upper crustal depths and they interpreted the result by the presence of a scattering 

waveguide at upper crustal depths (5-15 km) which might be also related to the granitic 

batholith. In our case, the zone of strong relative scattering coefficients at low frequency 

to the west of the GBA array cross-point also coincides with the so-called Closepet 

batholith, which is a granitic intrusion that acts as the major geological boundary in the 

region and it is believed to be a Precambrian suture zone between the eastern and 

western Dharwar craton. 
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Figure 5-11. Spatial distribution of relative scattering coefficients for a synthetic test consisting of one 

spheroidal structure with two horizontal semi-axes of 13 km and the vertical semi-axis of 9.3 km. It was 

located at different distances from the array centre point, which is shown by a solid triangle: (a) to the 

west; (b) below; and (c) to the east. The pattern recovered at a depth of 0 km is plotted at the top of the 

figure. The vertical cross section along the plane defined by the latitude of the array centre point is also 

shown. 
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Figure 5-11. (Continued) 



 111

76.60 77.30 78.00

Longitude

12.90

13.60

14.30

L
at

it
ud

e

76.60 77.30 78.00

Longitude

-80.00

-60.00

-40.00

-20.00

0.00

D
ep

th

Perturbation of Scattering Coefficient

0.00 0.07 0.14 0.21 0.29 0.36 0.43 0.50 0.57 0.64 0.71 0.79 0.86 0.93 1.00

Figure (c)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-11. (Continued) 
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5.7 CONCLUSIONS 

We estimated the three-dimensional distribution of relative scattering coefficients in the 

crust in southern India by means of an S-wave coda envelope inversion technique 

applied to local recordings by the Gauribidanur seismic array. Two different inversion 

algorithms were used for the first time in this type of seismological research: the 

Simultaneous Iterative Reconstruction Technique (SIRT) and the Filtered Back-

Projection (FBP) method. The results allowed to reach the following conclusions: 

1) The spatial distribution of the relative scattering coefficients obtained was almost 

independent of the inversion method used. 

2) The FBP method is very convenient and appropriate for solving these kinds of 

problems because it requires about 100 times less computation time than the SIRT 

algorithm to invert the data.  

3) The crust of the analyzed region around GBA showed a remarkably uniform 

distribution of scatterers at more than the 90% of the area, which is in accordance 

with the conclusions of previous studies in the region using statistical analysis of 

observed teleseismic traveltime residuals.  

4) An inhomogeneous structure with size comparable to a wavelength of ~1.8 to ~3.6 

km for 1.5 Hz was detected to the west of GBA from the surface up to a depth of 

about 24 km just below the array and it coincides with the Closepet granitic 

intrusion which is the major geological boundary between the eastern and western 

Dharwar craton. 
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6 THREE-DIMENSIONAL SPATIAL DISTRIBUTION OF 

SCATTERERS IN GALERAS VOLCANO, SOUTH-

WESTERN COLOMBIA 

6.1 INTRODUCTION 

In this chapter we will focus on the imaging of small-scale heterogeneities by the 

estimation of three-dimensional spatial distribution of relative scattering coefficients 

from shallow earthquakes occurred under the Galeras volcano region. The technique for 

the inversion of coda-wave envelopes was previously developed in Chapters 3 and 4. In 

this case, among the possible inversion methods to use for solving the problem, we will 

use the Filtered Backprojection method, because in Chapter 5 it was demonstrated that 

the results were almost independent of the inversion method used. Moreover, the FBP 

method required much less computation time to perform the inversion. 

Galeras is a 4276-m high andesitic stratovolcano in south-western Colombia 

near the border to Ecuador (see Figure 6-1). It is a 4,500 years old active cone of a more 

than 1 Ma old volcanic complex located in the Central Cordillera of the south-western 

Colombian Andes. It is historically the most active volcano in Colombia and it has been 

reactivated frequently in historic times [65]. It awakened again gradually in 1988 after 

more than 40 years of repose.  

Galeras is situated at 1°14'N and 77°'22'W, and its active summit raises 150 m 

up from the 80 m deep and 320 m wide caldera, which is open to the west (see Figure 

6-2). The present active crater lies about 6 km west of Pasto, which has a population of 

more than 300,000 and with another 100,000 people living around the volcano. 

Although it has a short-term history of relatively small-to-moderate scale eruptions, the 

volcanic complex has produced major and hazardous eruptions [Calvache et al. [66], 

1997] thus constituting a potential risk to the human settlements in this region. 

There are also three smaller craters in the caldera. The diameter on the foot of 
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the volcano is 20 kilometres. Long term extensive hydrothermal alteration has affected 

the volcano. This has contributed to large-scale edifice collapse that has occurred on at 

least three occasions, producing debris avalanches that swept to the west and left a large 

horseshoe-shaped caldera, inside which the modern cone has been constructed. Major 

explosive eruptions since the mid Holocene have produced widespread tephra deposits 

and pyroclastic flows that have swept down all but the southern flanks.  

Galeras was designated a Decade Volcano in 1991, which identified it as a target 

for intensive and interdisciplinary study during the United Nations’ International 

Decade for Natural Disaster Reduction. With the aim of enlarging the knowledge of the 

internal structure of the volcano as well as to serve for its seismic hazard assessment, 

the present study is a different complementary contribution to the interdisciplinary 

research (geological, geophysical and geochemical) being conducted in the region since 

the re-activation of Galeras volcano.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1. Topographic map of Colombia showing the location of the Galeras volcano and the study 

area. 
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6.2 GEOLOGICAL SETTING 

6.2.1 GEOLOGICAL HISTORY 

Galeras has been erupting lavas and pyroclastic flows during the last million years. Two 

major caldera-forming eruptions have occurred, the first about 560,000 years ago in an 

eruption which expelled about 15 cubic kilometres of material, and the second some 

time between 40,000 and 150,000 years ago, in a smaller but still sizable eruption of 2 

km³ of material. Subsequently, part of the caldera wall has collapsed, probably due to 

instabilities caused by hydrothermal activity, and later eruptions have built up a smaller 

cone inside the now horseshoe-shaped caldera. 

 

Figure 6-2. Galeras volcano from the west flank. Photo by Norm Banks of USGS [67]. 

At least six large eruptions have occurred in the last 5000 years, most recently in 

1886, and there have been at least 20 small to medium sized eruptions since the 1500s.  

Galeras is one of the 16 Decade Volcanoes identified by the International 

Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) as being 

worthy of particular study in light of their history of large, destructive eruptions and 

proximity to populated areas. The Decade Volcanoes project encourages studies and 
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public-awareness activities at these volcanoes, with the aim of achieving a better 

understanding of the volcanoes and the dangers they present, and thus being able to 

reduce the severity of natural disasters. The project was initiated as part of the United 

Nations-sponsored International Decade for Natural Disaster Reduction. 

Galeras had become active in 1988 after 40 years of dormancy. In 1993, the 

volcano erupted when several volcanologists were inside the crater taking 

measurements. The scientists had been visiting Pasto for a conference related to the 

volcano's designation as a Decade Volcano. Six were killed, together with three tourists 

on the rim of the crater. The eruptive period lasted until 1995. Since then, the volcano 

has been in a relative calm stage with some ash and gas emission episodes and low-level 

eruptive activity (a crater located to the east of the main one was re-activated in 2002 

after more than 10 years of inactivity) dusting nearby villages and towns with ash. A 

new eruptive episode began in 2004 (three explosive events have occurred in this 

period) and it continues active at the time of this writing (the activity reports are 

available at http://www.volcano.si.edu/). 

The volcano has continued to be well studied, and the studies concerning 

predictions of eruptions at the volcano have improved. One phenomenon which seems 

to be a reliable precursor to eruptive activity is a shallow-source, low frequency seismic 

events known as a “tornillos” which are related to magmatic activity and that have also 

been recorded during different stages of volcanic activity at Galeras [Gómez and Torres,  

1997 [68]]. These have occurred before about four-fifths of the explosions at Galeras, 

and the number of “tornillo” events recorded before an eruption is also correlated with 

the size of the ensuing eruption. 

Seismicity in the region since 1988 has been characterized by long period 

events, volcano-tectonic earthquakes and tremor episodes. The level of seismic activity 

has presented fluctuations, alternating periods of low-level seismicity with episodes of 

seismic activity increase in terms of the number and/or magnitude of the events. Some 

shallow (up to 8 km) volcano-tectonic earthquakes have reached local magnitudes up to 

4.7. 
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6.2.2 GEOLOGY OF GALERAS VOLCANO 

Galeras is located in a region with a metamorphic rock basement of Precambrian and 

Paleozoic ages [69]. The basement is overlaid by metamorphic rocks of Cretacic age 

with low and medium grade associated with amigdular metabasalts. All of this is 

covered by volcano sedimentary units of Tertiary age that made a plateau, over which 

the Pleistocenic and Holocenic volcanoes have emerged. The tectonic plate of this 

region is very complex, as a result of the collision between the Nazca and south 

American plates. This causes the uplift of the Andes and the volcanism in the region. 

The structural trend is N40°E and the principal tectonic feature is the Romeral Fault 

Zone, which has been interpreted as the limit between continental crust to the east and 

the oceanic crust to the west (Barrero, 1979). This system includes the Silvia-Pijao and 

Buesaco faults, both of which cross under Galeras, and are associated with many old 

caldera systems as can be seen in Figure 6-3. 

 

Figure 6-3. Geological map of the Galeras Region. The map includes the locations of the stations. 
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Galeras is a stratovolcano. Stratovolcanos are usually tall, conical mountains 

composed of both hardened lava and volcanic ash. The shape is characteristically steep 

in profile because lava flows that formed them were highly viscous, and so cooled and 

hardened before spreading very far. Such lava tends to be high in silica (mafic magma). 

All these characteristics apply to the Galeras volcano. In Figure 6-4 altitude curves are 

represented and the shape and steepness of this volcano becomes evident. 

Stratovolcanoes are often created by subduction of tectonic plates as in our case. 

 

Figure 6-4. Map showing the shape of Galeras volcano and altitude curves [72]. 

Studying 2SO  emissions it is possible to infer the internal structure of the 

Galeras volcano. The emissions of 2SO  are not constant. Usually, emissions decrease 

with time. Then, during eruption periods, emissions become intense. When the eruption 

has finished, a new period of emission decrease starts over again. The general decrease 

of the flux with time is interpreted as a progressive degassing of a single batch of 

magma followed by the obstruction of the conduit by emplacement of the dome. The 
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large amounts of sulfur degassed from Galeras strongly suggest that a reservoir of 

sulphur rich magma underlies the shallow magma in the conduit of the active cone. 

 

 

Figure 6-5. Sketch of the magmatic plumbing system beneath Galeras [72]. 

The presence of this hypothetical reservoir is also supported by petrologic and 

seismic data [70] which indicate that the reservoir is located at a depth of 4-5 km, The 

reservoir is able to supply 2SO and other gasses to the upper, more open and fractured 
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reaches of the volcano through a complex conduit system. Strong degassing fumaroles 

are surface expressions of this upper conduit system. As the reservoir cools becomes 

less convective and the result is a progressive decline in 2SO fluxes from the volcano. 

Then, the reservoir becomes isolated: the reservoir is no longer feed with fresh magma 

from deeper regions. During a reactivation cycle, the reservoir is initially supplied with 

mafic, sulphur rich magma from a deeper level after a repose period of tens of years. 

This supply of magma could be the result of tectonic disturbances nearby. Once this 

occurs, the magma can degas from the upper reservoir through the shallow conduit 

system and eventually rise to erupt explosively or effusively. 

Then, the behaviour suggests that the internal structure of the Galeras volcano is 

like the one outlined in Figure 6-5, where the magmatic plumbing system beneath 

Galeras is sketched. The plumbing system comprises the following structures: 

i) A sulphur-rich mafic magma at intermediate to deep levels in the 

crust 

ii) An upper reservoir fed from deeper levels 

iii) Shallow conduits through which most of the degassing takes place  

6.3 DATA DESCRIPTION 

 Data used in this study is a selection of 1564 high quality coda waves’ 

recordings from shallow earthquakes (depths less than 10 km from the Earth’s surface) 

with local magnitudes less than 2.0 occurred in the region since 1989 to 2002. The 31 

short-period (T0=1 s), vertical component recording stations used were deployed at 

different stages of the Galeras seismic network operation and they were located at 

distances less than 10 km from the active crater. The three-dimensional distribution of 

hypocenter and stations can be seen in Figure 6-6 and the coordinates and designation 

of each station can be found in Table 6-1. 
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Figure 6-6. Three-dimensional of hypocenters (green circles) and stations (blue triangles). 

Station number Name Latitude (º) Longitude (º) Altitude (km) 

0 ARLS 1.2500 -77.3913 3250 

1 CALA 1.2063 -77.4227 2353 

2 CB2R 1.1910 -77.3490 3625 

3 CB3D 1.1910 77.3490 3625 

4 COB3 1.1910 77.3490 3625 

5 CON4 1.2053 -77.4478 2050 

6 COND 1.1938 -77.3925 4000 

7 CONO 1.2202 -77.3588 4010 
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Station number Name Latitude (º) Longitude (º) Altitude (km) 

8 CR2D 1.2102 -77.3607 4058 

9 CR2G 1.2107 -77.3620 4032 

10 CR2R 1.2773 -77.3620 4032 

11 LOEW 1.3537 -77.3780 2350 

12 LOMV 1.3537 -77.3780 2350 

13 LONS 1.3537 -77.3780 2350 

14 NAR2 1.2688 77.3687 2870 

15 OLGA 1.2223  -77.3523 4100 

16 PLAZ 1.2593 -77.2790 3000 

17 PUYI 1.2977 -77.3230 2370 

18 TEL2 1.257700   -77.2740 3070 

19 URCR 1.2188 -77.3423 3494 

20 UREW 1.2188 -77.3423 3494 

21 URNS 1.2188 -77.3423 3494 

22 CBA2 1.1885 -77.3463 3570 

23 CO2R 1.2153 -77.4455 2168 



 123

Station number Name Latitude (º) Longitude (º) Altitude (km) 

24 CON2 1.2160  -77.4460 2140 

25 CON3 1.2337 -77.4410 2530 

26 CRA2 1.2078 -77.3612 4040 

27 CRA3 1.2065 -77.3612 4040 

28 OBEW 1.2033  -77.3227 3010 

29 OBNS 1.2033   -77.3227 3010 

30 URCO 1.2260 -77.3387 3435 

Table 6-1. Number, name and coordinates of each seismic station from which data has been used. 

6.4 DATA ANALYSIS 

In order to estimate the inhomogeneous spatial distribution of relative scattering 

coefficients in the crust we followed the method proposed in Chapter 3. The system of 

equations relating the spatial distribution of relative scattering strength to the observed 

coda energy residuals under the assumption of single isotropic scattering and spherical 

radiation of a seismic source can be written as: 
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 (6.1) 

We remind that this system of equations is obtained by dividing the coda of each 

seismogram into several small time windows. Then, in Eq.(6.1) there is an equation for 

every time window of every seismogram. Also for each time window, the scatterers 
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contributing to the energy density are contained in a spheroidal shell. Therefore, M is 

the total number of equations (number of seismograms multiplied by the number of 

coda time windows considered), and N is the total number of scatterers (number of 

small blocks into which the study region is divided). The right side of equation (6.1) is 

called coda wave energy residual (ej) which measures the ratio of the observed energy 

density in this part of the coda to the average energy density of the medium.  

We will carry out the inversion of the system by using the Filtered Backprojection 

Algorithm developed in Section 4.5. 

Because each analyzed frequency band is giving us information about 

inhomogeneous structures with sizes comparable to the seismic wavelengths, and given 

that the signal energy contents of the available data decays abruptly for frequencies f 

above 12 Hz, we decided to calculate the coda wave energy residuals [Nishigami, 1991 

[40]; Ugalde et al., 2005 [71] for the frequency bands 4-8 (6±2) Hz and 8-12 (10±2) Hz, 

thus allowing us to image structures of sizes comparable to wavelengths of ~400 to 

~800 m for 4-8 Hz, and ~300 m to ~400 m for 8-12 Hz. These sizes are derived by 

considering an average S-wave velocity of β=3.3 km/s in the study region. From the 

bandpass-filtered seismograms, we calculated the rms amplitudes obs ( | , )A f r t  for each 

hypocentral distance r by using a 0.25 s spaced moving time window of length t±1 s, 

and t±0.5 s for the 6 Hz and 10 Hz centre frequencies, respectively.  

The time interval for the analysis started at 1.5 times the S-wave travel times (in 

order to increase the resolution near the source region) and had a maximum length of 20 

s (to minimize the effects of multiple scattering). We also computed the rms amplitudes 

for a noise window of 10 s before the P-wave arrival and only the amplitudes greater 

than two times the signal to noise ratio were kept. Then, the average decay curve was 

estimated for each seismogram by means of a least-squares regression of 

( )2
obsln | ,t A f r t    vs. t, where the term t2 is a geometrical spreading correction which 

is valid for body waves in a uniform medium. We only kept the estimates with a 

correlation coefficient greater than 0.60. The observed coda energy residuals e(t) were 

then calculated by taking the ratio of the corrected observed amplitudes to the estimated 

exponential decay curve. Finally the residuals were averaged in time windows of 
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tδ =0.25 s to get ej at discrete lapse times tj.  

A 20 km x 20 km in horizontal and 50 km in depth study region was selected 

taking into account the stations and hypocenters distribution. It was divided into N=50 x 

50 x 50 blocks, the volume of which satisfies the condition ( )1/32 /t Vδ δ β≤ . Then, the 

observational system of equations (6.1) was created by assuming the layered velocity 

structure shown in Table 6-2 and it was solved using the FBP algorithm [Ugalde et al., 

2005, [71]].  

Depth (km) S-wave velocity (km/s)

4 2.0 

2 2.1 

0 2.2 

-4 3.4 

-22 3.8 

-40 4.5 

Table 6-2. S-wave velocity model for the Galeras Volcano region. 

6.5 RESULTS 

To check for sampling insufficiencies, we plotted in Figure 6-7 a vertical cross section 

of the hit counts, or number of coda residuals contributed by each block. The figure 

shows that the entire region is sampled by the ellipses although the number of hit counts 

is smaller at the deepest levels and also inside a shallow area to the north-east of the 

volcano summit.  
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Figure 6-7. Vertical cross sections of the hit count distribution along the parallel 1.23°N (A) and the 

meridian 77.36°W (B) which correspond to the coordinates of the summit. The Galeras volcano location 

is indicated by the solid triangle. 

  The resulting distribution of relative scattering coefficients 1α −  in the study 

region for the analyzed frequency bands and for different depths up to 10 km from the 

summit is plotted in Figure 6-8. The colour scale indicates the perturbation of scattering 

coefficients from the average in this region, being the largest values ~3.0 and the 

minimum ~0.5.  
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Figure 6-8. Horizontal sections of the study area showing the distribution of the relative scattering 

strength (α-1) at different depths from 4 km to -4.5 km. The solid triangle indicates the location of the 

Galeras volcano summit. The topographic contour lines at 4000 m and 3500 m levels are also plotted. 
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6.6 DISCUSSION  

Figure 6-8 shows that the region of ±10 km in horizontal and 10 km in depth centred at 

the Galeras volcano summit presents a remarkable inhomogeneous distribution of 

relative scattering coefficients. More than the 83% and the 50% of the analyzed region 

for low and high frequencies, respectively, reveal a spatial perturbation of the scattering 

coefficient greater than +50%. For low frequencies, a strong scattering donut-shaped 

area with relative scattering coefficients between 0.96 and 3.0 is found around the 

volcano at all depths. The volume showing the strongest relative scattering coefficients 

(α-1~2.0-3.0) is located to the northeast of the volcano at depths between -0.5 km and -

4.5Km. At high frequencies, the strong scattering zone occurs slightly to the north of the 

axis of the volcano at the same depths. Also we may notice that the scattering strength is 

similar but slightly lower for the lower frequency band. Then, we may conclude that, at 

shallow depths, there is a single complex structure located at the north of the volcano 

that shows a frequency dependent behaviour. The relative scattering coefficients at high 

frequencies are stronger than those of low frequencies in a volume near the axis of the 

volcano, which means that small-size heterogeneities as small fractures (comparable to 

a wavelength of ~300 m to ~400 m for a centre frequency of 10 Hz) contribute more 

scattered energy than those with larger sizes. On the contrary, heterogeneities with sizes 

comparable to a wavelength of ~400 to ~800 m for a centre frequency of 6 Hz 

contribute more to the scattering energy at the north-east of the summit.  

  Figure 6-9 shows a vertical cross section of the region along the east-west and 

north-south directions centred at the volcano which shows the scattering perturbation at 

higher depths. A second strong scattering volume at depths between -29 km and -36 km 

is clearly observed at high frequencies and can be noticed at low frequencies. 

Unfortunately, in this case it is more difficult to establish the geometry of the scattering 

region. The ellipsoidal pattern imaged results from both a poor sampling and the 

geometry of the ellipses at these deeper levels, which are almost parallel. This makes it 

possible to establish only the depth and height of the region. A frequency dependence of 

the strength of the scattering coefficient is again observed thus indicating that small-

scale heterogeneities contribute more scattering energy at these deeper levels.  
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Figure 6-9. Vertical cross section of the study region along the two planes defined by the summit 
coordinates, which indicated by the solid triangle (latitude 1.23o and longitude -77.36o). The color scale 
indicates the perturbation of the scattering coefficient α-1 for the 4-8 Hz (A, B) and 8-12 Hz (C, D) 
frequency bands. 
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  The existence of both structures is in close agreement with the current magmatic 

plumbing system model beneath Galeras volcano. This model is based on petrologic and 

seismic data and it proposes a shallow conduit system with a distinct reservoir at a depth 

of 4-5 km from the summit which is periodically fed from a deeper magma reservoir 

which is located from km’s to tens of km’s depth [Calvache, 1990 [70]; Zapata et al., 

1997,[72]].  

   

Figure 6-10. Vertical cross section showing the results of the inversion analysis for a synthetic test 

consisting of two spherical structures buried at depths of -2 km and -33 km. 

  In order to establish the validity of the results of this study and to help their 

geological interpretation, we tested the inversion method by means of a synthetic test. 

We simulated the presence of two magmatic chambers located at the north of the 

volcano at depths of -2 km and -33 km by two spherical structures with positive 

perturbations of the scattering coefficient embedded in a non perturbed medium. Then, 

we synthesized the coda energy residuals from the observational equation using the 

synthetic pattern of scattering coefficients and the same distribution of stations and 
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events used in the analysis. Figure 6-10 shows the inversion of the synthesized 

residuals. It can be observed that both the pattern and the perturbation value of the 

scattering coefficient were well resolved in the considered region for shallow depths. A 

comparison of Figure 6-9 and Figure 6-10 suggests a reasonable agreement between 

synthetic and experimental results, thus supporting the identification of the scattering 

structures imaged with the magmatic chambers of the geological model. 

6.7 CONCLUSIONS 

The three-dimensional spatial distribution of relative scattering coefficients has been 

estimated for the Galeras volcano, Colombia, by means of inversion analysis of coda 

wave envelopes from 1564 high quality seismic recordings by 31 stations of the Galeras 

seismograph network. Results reveal a highly non-uniform distribution of relative 

scattering coefficients in the region for the two analyzed frequency bands (4-8 and 8-12 

Hz). Strong scatterers showed frequency dependence, which was interpreted in terms of 

the scale of the heterogeneities producing scattering. Two zones of strong scattering are 

detected: the shallower one is located at a depth from 4 km to 8 km under the summit 

whereas the deeper one is imaged at a depth of ~37 km from the Earth’s surface. Both 

zones may be correlated with the magmatic plumbing system beneath Galeras volcano. 

The second strong scattering zone may be probably related to the deeper magma 

reservoir that feeds the system.  
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7 CONCLUSIONS 

The behaviour of coda waves in seismograms is one of the observations supporting the 

existence of small-scale random heterogeneities in the Earth. The direct S wave 

observed in a seismogram from a local earthquake is followed by complex wave trains 

with amplitudes smaller than the direct wave and that exponentially decay with time, 

which are called S-coda. It is widely accepted that coda waves are formed by 

superposition of incoherent scattered waves from randomly distributed heterogeneities 

in the lithosphere, such as cracks, faults, folds, and velocity or density anomalies with 

scale length about the seismic wavelength. S-coda waves have an envelope shape 

common to all epicentres and stations in a given region after twice the S wave travel 

time. Total scattering coefficient (g) and coda attenuation (Qc
-1) are the parameters 

which characterize the coda excitation (which measures the capacity of the medium to 

originate scattering) and the decay rate of coda envelopes (which is a measure of the 

attenuation of the medium) within a given frequency band, respectively.  

 A number of models have been proposed to relate scattering and coda wave 

amplitudes. One approach to model the coda envelopes is to consider the 

heterogeneities as randomly and uniformly distributed point-like scatterers. Using this 

model and on the basis of the energy transport (or radiative transfer) theory, the S-wave 

coda has been synthesized under the assumption of single isotropic scattering, multiple 

isotropic scattering and multiple non-isotropic scattering. Most of these models were 

reviewed with a certain detail in Chapter 2. 

 Scattering from randomly and non-uniformly distributed heterogeneities has also 

been studied to explain the features of the observed envelopes of S coda waves. The 

subject of Chapter 3 was to describe an existing inversion method of coda waveforms 

from local earthquakes to estimate the inhomogeneous spatial distribution of relative 

scattering coefficients in the crust. The method is based on the assumption that the 

fluctuation of the decay curve of the observed coda envelope from a reference curve, 

which was estimated by assuming single isotropic scattering and spherical radiation 

from the source, is caused by a non-uniform distribution of scatterers in the crust. This 

method has proved to be an effective approach to investigate the real heterogeneous 

structure in the crust of several regions in the world.  
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Several inversion algorithms have been used to solve the problem in order to 

obtain the strength of the scattering coefficients: standard inversion methods, recursive 

stochastic inversion methods, and the Algebraic Reconstruction Technique (ART).   

In this thesis the inversion analysis was performed for the first time in this kind 

of seismological research by means of the Simultaneous Iterative Reconstruction 

Technique (SIRT) and Filtered Back-Projection method (FBP). We demonstrated that, 

whereas the first one allows to obtain more exact solutions, the second one is a much 

faster non-iterative algorithm that has proved to provide very accurate reconstructions. 

The inversion analysis required a previous original theoretical development 

(which is presented in Chapter 4) in order to adapt the Filtered Backprojection 

algorithm to the geometry defined by the problem to be solved. Then, firstly, the 

Filtered Backprojection algorithm was derived using a simple approach: the 

reconstruction of a two-dimensional object from its projections. Secondly, we 

generalized the result to the two-dimensional case and, finally, by taking into account 

the special geometry of our problem we devised an algorithm adapted to our case. 

The resulting algorithm is about 100 times faster than ART, and we showed that 

the solutions obtained have similar accuracy. Moreover, the speed improvement of our 

Filtered Backprojection algorithm allows to carry out inversions with a higher 

resolution. 

Then, we applied the method for the first time to real seismic data from two 

regions with different geotectonic characteristics: a stable region in southern India and 

an active volcano in south-western Colombia. Both regions have a high scientific 

interest, since the crustal structural characteristics of these regions were still poorly 

known. Results from the present work are also important from the social point of view, 

since they represent a contribution to seismic hazard assessment in the target regions. 

Chapter 5 presents the estimation of three-dimensional spatial distribution of 

relative scattering coefficients for the Gauribidanur seismic array (GBA) site in 

southern India. Data used consisted of selected 636 vertical-component, short period 

recordings of microearthquake codas from shallow earthquakes with magnitudes 

ranging from 0.7 to 3.7 and epicentral distances up to 120 km from the array centre 
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point. Results were almost independent of the inversion method used (SIRT and Filtered 

Backprojection) and they were frequency dependent. They showed a remarkably 

uniform distribution of the scattering strength in the crust around GBA. However, a 

shallow (0-24 km) strong scattering structure, which is only visible at low frequencies, 

seems to coincide with the Closepet granitic batholith which is the boundary between 

the eastern and western parts of the Dharwar craton. 

Finally, Chapter 6 presents the three-dimensional spatial distribution of relative 

scattering coefficients for the Galeras volcano, Colombia. Coda wave envelopes came 

from 1564 high quality seismic recordings by 31 stations of the Galeras seismograph 

network. Results revealed a highly non-uniform distribution of relative scattering 

coefficients in the region for the two analyzed frequency bands (4-8 and 8-12 Hz). 

Strong scatterers showed frequency dependence, which was interpreted in terms of the 

scale of the heterogeneities producing scattering. Two zones of strong scattering were 

detected: the shallower one is located at a depth from 4 km to 8 km under the summit 

whereas the deeper one is imaged at a depth of ~37 km from the Earth’s surface. Both 

zones may be correlated with the magmatic plumbing system beneath Galeras volcano. 

The second strong scattering zone may be related to the deeper magma reservoir that 

feeds the system. 

 Although the analysis method used assumes simple models of scattering, seismic 

source radiation, attenuation and velocity structure, the scattering images obtained 

appear to be coherent with the available geological information. The synthetic tests 

performed corroborate this assertation.  

 Concluding, the coda analysis method presented in this thesis seems to be one of 

effective approaches to investigate the real heterogeneous structure in the crust 

deterministically. We believe it is a very useful method for this purpose and we 

encourage further applications to other seismically active regions in the world. The 

improvement of the underlying scattering model to a more realistic one would be also 

necessary. 
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APPENDIX A. EVENTS AT GBA REGION 

In this appendix the events at the Gauribidanur seismic array region corresponding to 

the period 1992-1995 are identified with the corresponding date, origin time, distance 

(in km) to the array centre point, location coordinates and local magnitude. Depth of 

hypocenter is about 10 km for all the events. 

Date Origin Time (GMT) Coordinates Hypocenter 

d m y hr min sec D(km) Lat 
(oN) 

Long 
(oE) 

Magnitude 

18 1 1992 11 12 31.0 51 13.37 77.02 2.2 
4 2 1992 6 17 34.0 18 13.51 77.30 1.6 
5 2 1992 7 10 34.0 91 13.14 76.74 1.0 

23 2 1992 13 11 39.0 73 13.08 77.03 1.0 
27 2 1992 12 18 49.0 93 14.42 77.63 1.1 
7 3 1992 11 16 54.0 23 13.50 77.25 1.1 

23 7 1992 8 49 54.0 81 14.31 77.23 1.2 
3 8 1992 7 48 13.0 25 13.47 77.25 0.9 
9 8 1992 12 6 24.0 31 13.84 77.59 0.7 
9 8 1992 9 18 23.0 91 12.85 77.10 1.1 
9 8 1992 9 35 16.0 91 12.85 77.10 1.0 

12 8 1992 7 45 35.0 40 13.91 77.63 1.8 
14 8 1992 12 4 48.0 44 13.94 77.65 1.4 
16 8 1992 7 48 9.0 46 13.92 77.72 1.5 
18 8 1992 13 20 21.0 41 13.88 77.70 0.8 
4 11 1992 7 41 21.0 84 12.98 77.88 1.1 

24 11 1992 6 59 32.0 104 14.47 77.82 2.1 
24 12 1992 8 48 13.0 111 14.46 76.90 1.4 
28 1 1993 9 23 36.0 41 13.59 77.05 1.7 
6 4 1993 18 40 11.4 70 14.15 77.45 3.0 

24 7 1993 6 6 7.0 75 12.94 77.59 2.9 
28 7 1993 13 2 39.0 84 13.06 76.90 1.3 
30 8 1993 8 49 21.0 85 13.23 78.13 1.6 
12 10 1993 3 1 58.0 82 13.08 77.97 2.9 
9 11 1993 13 34 46.0 59 13.07 77.41 2.0 

12 2 1994 9 1 56.0 111 12.83 78.09 1.6 
7 4 1994 5 9 49.0 90 14.30 77.86 1.7 
2 5 1994 12 40 14.0 80 14.19 77.87 1.4 
9 5 1994 11 49 40.0 81 13.84 78.15 2.8 

18 6 1994 13 0 28.0 97 14.41 77.78 2.0 
21 6 1994 12 48 19.0 97 14.27 78.03 1.6 
23 6 1994 12 20 35.0 91 12.78 77.44 2.1 
25 6 1994 13 57 55.0 96 14.31 77.95 2.0 
29 6 1994 8 56 37.0 100 13.88 78.32 1.4 
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Date Origin Time (GMT) Coordinates Hypocenter 

d m y hr min sec D(km) Lat 
(oN) 

Long 
(oE) 

Magnitude 

29 6 1994 12 27 56.0 101 14.34 77.99 1.9 
30 6 1994 8 14 51.0 100 13.91 78.31 1.7 
25 1 1995 23 24 39 116 12,62 77,79 1,5 
12 2 1995 5 6 36 100 12,91 76,85 1,5 
12 2 1995 23 0 7 105 12,87 76,82 2,3 
20 2 1995 3 54 0 63 13,92 77,92 1 
12 3 1995 23 8 16 115 12,62 77,78 1,2 
26 4 1995 6 28 18 79 13,66 78,17 1,9 
25 5 1995 2 2 22 98 14,31 77,98 1,3 
21 8 1995 11 57 50 91 13,11 76,76 1,3 
26 8 1995 8 22 46 91 13,14 76,74 1,3 
7 9 1995 12 53 36 17 13,73 77,35 0,9 

17 9 1995 4 49 33 84 12,85 77,47 1,4 
19 9 1995 11 35 37 95 13,09 76,73 1,3 
1 10 1995 4 59 33 65 13,02 77,54 2,4 
8 11 1995 12 27 50 111 14,46 77,99 1,5 

15 11 1995 7 16 36 119 13,04 76,5 1,3 
22 11 1995 12 8 10 118 14,51 78,02 1,2 
4 12 1995 9 31 5 83 12,89 77,69 2,4 

13 12 1995 16 26 27 109 14,48 77,9 1,4 
15 12 1995 22 45 15 92 12,8 77,21 1,8 
29 12 1995 12 49 59 113 14,47 77,99 1,9 
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APPENDIX B. EVENTS AT GALERAS VOLCANO 

In this appendix the events at Galeras volcano corresponding to the period 1989-1992 

and 1993-2002 are identified with a number, the corresponding date and origin time, 

location coordinates depth and local magnitude. 

Events from 1982 to 1992 

Code Origin Time Latitude Longitude Depth 
N 

yymmddx Hour Min. Sec. Deg. Min. Deg. Min. km 
Mag. 

0 8908040i 15 16 14.99 1 14.85 77 21.85 5 0.96 

1 8908130u 23 28 2.97 1 13.26 77 22.15 3.49 1.15 

2 8908150b 11 27 44.09 1 13.24 77 22.34 2.61 0.46 

3 89091701 1 8 59.01 1 13.39 77 23.68 0.94 -0.32 

4 89092607 7 9 15.92 1 12.24 77 20.76 0.85 0.81 

5 8910011l 22 22 46.38 1 13.21 77 22.02 2.99 0.58 

6 8910220v 23 21 11.74 1 13.36 77 22.93 3.71 0.61 

7 8910250c 7 4 17.75 1 12.51 77 21.76 4.91 1.2 

8 89110505 2 29 40.92 1 13.53 77 23.19 3.13 0.37 

9 89110605 3 31 25.13 1 13.37 77 22.99 2.69 1.04 

10 89111804 2 53 55.07 1 13.31 77 22.67 2.4 0.79 

11 8911261q 15 43 9.71 1 12.93 77 21.71 3.12 0.35 

12 8912062k 17 29 44.43 1 13.26 77 23.01 3.3 0.81 

13 8912062m 17 32 58.61 1 13.18 77 23.06 3.2 0.94 

14 8912100u 20 26 56.46 1 13.13 77 22.83 5 0.82 

15 89121303 4 14 31.39 1 12.8 77 23.01 5 0.66 

16 8912230c 3 50 4.21 1 13.26 77 22.98 2.82 0.81 

17 9001131u 21 55 37.82 1 12.7 77 22.4 2.44 0.67 

18 9001181o 8 19 13.69 1 13.23 77 22.98 3.74 0.5 

19 9001250g 13 17 24.84 1 13.34 77 21.92 3.99 0.15 

20 90012802 4 51 39.5 1 13.27 77 22.98 3.44 1.05 

21 90012803 4 57 8.66 1 13.25 77 23.07 4.85 0.76 

22 90020415 14 24 17.14 1 12.73 77 23.04 2.99 0.86 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx Hour Min. Sec. Deg. Min. Deg. Min. km 
Mag. 

23 90020504 2 51 17.75 1 12.67 77 22.11 4.95 0.71 

24 90020602 1 8 47.58 1 13.53 77 23.66 3.14 1 

25 90020809 6 30 30.11 1 12.6 77 21.83 4.1 0.62 

26 90020901 2 21 12.17 1 13.63 77 23.32 5.29 1.05 

27 90022109 10 15 40.65 1 13 77 25.29 5.45 0.8 

28 90022308 14 25 13.74 1 13.24 77 23.46 3.53 0.46 

29 90022309 14 26 9 1 13.24 77 23.47 3.66 1.19 

30 90022408 11 13 41.55 1 13.25 77 23.5 2.96 0.88 

31 90030403 3 39 11.88 1 13.27 77 23.59 3.29 0.75 

32 90030406 7 44 59.89 1 13.3 77 23.59 3.56 0.74 

33 90030408 7 49 50.63 1 13.37 77 23.6 3.09 0.76 

34 9003040a 9 44 44.63 1 13.34 77 23.56 3.27 0.81 

35 90030801 2 17 28.09 1 13.24 77 23.11 3.51 0.94 

36 90031702 2 24 35.22 1 13.26 77 23.61 4.29 0.75 

37 9003261m 19 38 51.3 1 14.91 77 21.83 6.81 0.71 

38 90032920 19 56 30.77 1 12.81 77 21.61 3.73 0.07 

39 9004011h 11 37 17.8 1 13.49 77 23.08 4.4 0.62 

40 90040409 3 44 16.33 1 13.43 77 22.85 3.91 0.59 

41 9004040g 5 52 11.33 1 13.75 77 22.78 4.52 0.37 

42 9004040l 7 31 2.38 1 13.27 77 22.57 6.3 0.89 

43 90040417 11 5 5.87 1 13.46 77 22.74 3.22 0.47 

44 9004041r 15 3 27.45 1 12.74 77 22.94 4.39 0.34 

45 90042605 1 39 28.77 1 13.09 77 22.22 2.68 0.77 

46 90050506 0 42 46.1 1 12.68 77 21.97 3.62 0.79 

47 9005050a 1 53 39.07 1 13.67 77 23.1 3.08 1.16 

48 9005050m 5 41 59.64 1 13.67 77 23.14 3.29 0.69 

49 9005050r 7 9 0.98 1 12.74 77 21.82 3.55 0.9 

50 9005060f 5 18 9.79 1 13.77 77 23.1 3.05 0.73 

51 90051102 3 7 44.14 1 13.23 77 23.47 2.8 0.7 

52 9005110h 9 58 51.6 1 13.4 77 22.47 2.49 0.46 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx Hour Min. Sec. Deg. Min. Deg. Min. km 
Mag. 

53 90051702 6 59 24.46 1 13.38 77 22.99 3.73 0.2 

54 9005270n 14 59 10.51 1 13.79 77 23.43 4.52 0.71 

55 90052712 15 51 12.99 1 13.26 77 23.2 3.48 0.89 

56 90052800 4 3 39.14 1 13.38 77 22.69 3.85 0.69 

57 90052801 8 30 27.83 1 13.36 77 22.85 3.59 0.65 

58 9008080l 4 56 50.62 1 12.99 77 23.19 3 0.8 

59 9008181f 20 6 17.01 1 12.5 77 22.92 3.15 -0.01 

60 90082614 14 42 27.5 1 12.74 77 22.81 3.55 0.8 

61 90082700 9 13 35.12 1 12.74 77 23.14 4.3 0.7 

62 90082705 12 35 5.38 1 12.95 77 22.93 4.84 0.44 

63 9008281b 12 2 18.9 1 12.74 77 22.98 4.62 0.51 

64 90083015 14 8 52.05 1 12.97 77 22.89 3.68 0.48 

65 90090307 1 3 55.21 1 12.65 77 22.97 4.13 0.53 

66 9009061u 18 19 24.61 1 12.88 77 22.73 4.59 1.53 

67 90110709 15 17 33.28 1 12.05 77 20.82 4.35 1.17 

68 9012071a 17 10 39.82 1 12.98 77 23.12 3.4 1.5 

69 9104222v 17 32 5.81 1 12.68 77 23.56 2.43 1.03 

70 91042233 17 58 14.09 1 12.5 77 23.6 4.24 1.48 

71 91050111 18 20 55.27 1 12.41 77 23.72 2.97 1.27 

72 91052906 2 13 12.59 1 13.21 77 22.79 4.27 0.99 

73 91052907 2 17 44.05 1 13.1 77 22.97 4.03 0.68 

74 9109191r 8 18 45.39 1 14.29 77 21.26 3.48 0.78 

75 9206020u 21 34 5.28 1 13.28 77 21.46 3.17 0.7 

76 92080404 5 49 5.26 1 13.44 77 21.91 0.8 0.92 

77 92081616 15 24 5.21 1 13.44 77 22.01 0.79 1.01 
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Events from 1993 to 2002 

Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

78 93040800 6 4 2.99 1 13.49 77 22.12 1.48 1 

79 93041100 2 59 26.93 1 13.17 77 22.65 6 1.03 

80 9304262u 17 0 55.18 1 14.75 77 22.11 3.51 1.29 

81 9304270a 0 54 0.98 1 14.85 77 22.04 4.36 1.25 

82 9304270d 1 2 50.22 1 14.81 77 22.14 4.24 1.37 

83 9304270f 1 12 9.87 1 14.88 77 21.95 4.24 1.33 

84 9304270p 2 2 24.36 1 13.51 77 21.96 3.82 0.87 

85 9304270u 2 10 2.72 1 15.06 77 21.76 4.62 1.19 

86 93042707 0 52 6.08 1 14.89 77 22.07 4.25 1.59 

87 93042708 0 52 6.07 1 14.91 77 22.07 4.32 1.22 

88 9304271b 5 12 9.68 1 15.35 77 21.97 4.92 1.11 

89 9304271g 8 30 10.6 1 15.19 77 22.06 4.67 1.41 

90 9304271x 16 56 56.41 1 14.63 77 22.27 3.59 1.68 

91 93042712 3 6 57.38 1 15.24 77 21.97 4.69 1.12 

92 9304272d 20 23 23.01 1 15.18 77 21.95 4.36 1.53 

93 93042802 0 41 49.18 1 15.45 77 21.93 5.41 1.45 

94 93042808 3 46 4.02 1 14.90 77 21.93 3.83 1.6 

95 9304290l 12 14 30.4 1 14.68 77 22.15 3.64 1.32 

96 93050102 2 37 41.82 1 14.80 77 21.95 4.35 1.32 

97 9305020l 10 16 52.03 1 15.27 77 21.95 4.62 1.58 

98 93050906 3 33 11.93 1 14.84 77 21.47 4.73 1.06 

99 9305130x 14 19 11.51 1 14.77 77 21.58 4.79 1.16 

100 93051903 6 27 7 1 14.93 77 22.17 3.44 1.55 

101 93052015 10 42 16.11 1 14.91 77 21.53 7.03 1.93 

102 930602gx 20 25 49.16 1 12.98 77 26.01 9.02 2.08 

103 9308052q 3 25 15.23 1 12.54 77 21.13 8.3 1.19 

104 93102006 11 9 9.05 1 13.11 77 21.53 0.54 1.08 

105 93103007 5 32 59.04 1 13.71 77 23.15 2.1 0.27 

106 9312010m 4 18 14.65 1 14.91 77 21.65 4.35 1.12 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

107 9312011p 11 9 49.01 1 14.59 77 21.52 4.09 1.08 

108 9407271h 16 49 17.11 1 13.43 77 23.55 6.61 0.44 

109 9408093i 8 22 20.93 1 13.13 77 21.80 3.58 0.49 

110 94081206 1 52 37.45 1 14.66 77 21.43 3.3 1.1 

111 9412142u 23 32 7.21 1 13.82 77 22.04 1.53 0.42 

112 9412230c 7 13 12.47 1 14.59 77 21.62 6.75 0.99 

113 95011102 0 31 0.17 1 12.22 77 23.30 5.55 0.96 

114 95021202 1 19 26.44 1 15.05 77 22.04 3.91 0.95 

115 95021418 12 9 38.87 1 13.86 77 24.09 1.09 1.37 

116 9502234f 22 28 51.94 1 13.56 77 24.62 5.86 0.94 

117 9503041i 18 39 25.03 1 14.64 77 21.63 4.17 1.42 

118 9503041t 18 49 2.24 1 14.57 77 21.59 4.53 1.37 

119 9503041x 18 52 25.56 1 14.59 77 21.40 4.61 1.39 

120 9503042w 19 26 16.94 1 14.40 77 21.22 4.89 0.77 

121 95030434 19 34 12.96 1 14.76 77 21.52 4.04 1.44 

122 9503043g 19 44 54.63 1 15.11 77 21.67 5.39 0.76 

123 9503043i 19 47 54.62 1 14.65 77 21.44 5.17 1.1 

124 95030502 0 2 16.75 1 14.89 77 21.52 4.57 1.26 

125 9503052p 4 2 35.03 1 14.72 77 21.45 4.14 1.46 

126 9503056r 12 49 12.32 1 14.70 77 21.38 4.71 0.84 

127 9503058s 16 41 55.42 1 14.28 77 21.65 4.36 0.72 

128 9503059m 19 25 43.65 1 14.89 77 21.55 4.4 1.12 

129 9503059y 20 17 54.88 1 14.33 77 21.50 5.17 0.98 

130 9503060u 3 44 8.31 1 14.79 77 21.60 4.62 1.12 

131 95030720 10 34 53.34 1 14.72 77 21.70 4.83 0.93 

132 95030806 0 23 9.53 1 14.79 77 21.56 4.8 1.21 

133 9503083o 16 44 39.98 1 14.93 77 21.79 3.92 1.03 

134 95030915 9 33 15.26 1 15.06 77 21.77 4.68 1.34 

135 9503094h 23 21 13.12 1 15.64 77 18.73 5.31 0.72 

136 9503100t 0 49 11.72 1 15.02 77 21.65 4.48 0.95 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

137 9503100z 0 56 15.96 1 15.37 77 19.55 6.37 0.27 

138 95031012 0 58 12.42 1 15.24 77 19.53 7.02 1.63 

139 95031013 0 59 46.15 1 15.25 77 20.04 6.46 1.25 

140 95031008 0 24 40.53 1 15.53 77 18.83 5.76 1.76 

141 9503101e 1 24 47.88 1 14.91 77 21.60 4.54 0.93 

142 9503109s 23 36 42.19 1 15.30 77 21.31 5.12 0.78 

143 95031091 21 34 54.7 1 15.11 77 21.61 5.17 1.96 

144 95031107 1 35 47.57 1 15.45 77 19.08 7.08 0.67 

145 9503113r 20 58 54.86 1 15.14 77 19.29 5.81 1.12 

146 95031141 22 7 31.95 1 15.86 77 20.35 7.21 1.48 

147 95031207 2 55 5.61 1 15.19 77 19.14 4.77 1.12 

148 9503121f 11 36 23.67 1 15.44 77 18.90 4.83 0.78 

149 9503121i 12 28 9.07 1 15.53 77 20.62 5.92 1 

150 9503122s 20 13 55.83 1 15.47 77 19.03 7.84 1.22 

151 9503123a 23 15 46.29 1 15.80 77 20.01 6.13 0.91 

152 9503130g 4 49 33.17 1 15.84 77 20.42 4.77 0.88 

153 9503130j 5 27 42.48 1 15.64 77 18.43 5.73 1.24 

154 9503130r 7 15 49.06 1 15.08 77 21.43 5.78 1.45 

155 9503130t 7 44 37.08 1 15.43 77 21.50 4.97 1.54 

156 9503131x 13 12 37.93 1 15.23 77 19.85 6.29 1.19 

157 9503131y 13 13 32.76 1 15.56 77 18.20 5.41 0.99 

158 9503140i 5 19 34.53 1 15.67 77 18.70 4.47 0.72 

159 9503140r 7 1 42.35 1 15.16 77 19.86 6.09 1.01 

160 95031402 1 7 45.72 1 15.57 77 20.97 6.39 1 

161 9503142i 19 14 21.45 1 15.54 77 19.76 6.2 1.11 

162 9503142k 19 18 21.44 1 15.23 77 20.03 6.7 0.92 

163 9503150h 6 3 29.14 1 15.86 77 18.94 4.27 0.99 

164 9503150v 8 10 1.31 1 15.59 77 19.19 7.98 1.11 

165 95031605 1 35 35.47 1 15.70 77 20.07 6.27 1.05 

166 9503162f 21 58 56.02 1 15.43 77 20.47 6.88 1.03 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

167 95031623 19 8 8.27 1 15.94 77 20.64 6.33 0.99 

168 9503170x 12 25 52.6 1 15.59 77 18.58 5.53 0.99 

169 9503170z 12 33 50.9 1 15.34 77 19.00 4.94 1.13 

170 95031704 2 32 6.24 1 15.56 77 18.82 5.79 0.98 

171 9503171m 18 10 30.86 1 15.63 77 18.64 4.86 0.82 

172 9503172b 21 9 52.38 1 15.05 77 19.06 5.45 1.08 

173 9503172q 23 55 10.81 1 15.18 77 19.02 5.73 0.91 

174 9503180d 6 54 8.54 1 15.25 77 19.21 5.76 1.09 

175 95031801 1 32 41.94 1 15.42 77 19.09 5.31 0.89 

176 9503191a 16 58 35.7 1 15.32 77 19.14 4.82 0.85 

177 9503191p 18 55 54.3 1 15.61 77 18.40 5.15 0.9 

178 95032004 14 50 51.41 1 15.12 77 19.08 5.16 0.91 

179 95032020 21 0 22.34 1 15.59 77 18.30 5.15 1.11 

180 95032024 21 58 31.39 1 15.77 77 19.43 6.31 1.11 

181 9503211b 16 52 23.01 1 15.63 77 19.32 5.03 1.22 

182 9503220x 7 31 18.76 1 15.71 77 19.12 5.2 1.16 

183 95032217 9 18 22.06 1 15.69 77 20.85 6.52 1.11 

184 95040106 4 6 49.13 1 15.70 77 18.70 5.41 1.17 

185 9504030t 15 5 34.49 1 15.74 77 21.27 5.91 0.69 

186 95040410 5 57 8.4 1 15.35 77 19.09 7.35 0.98 

187 95040501 0 41 39.16 1 15.70 77 18.92 6.34 0.8 

188 9504057e 22 20 22.46 1 15.30 77 19.12 5.39 0.61 

189 95040605 4 5 2.93 1 15.44 77 19.69 6.22 0.64 

190 9504140b 3 20 26.82 1 13.43 77 22.01 2.62 1.23 

191 95041406 3 16 25.33 1 13.43 77 22.01 2.74 0.95 

192 9504140n 4 32 35.63 1 13.40 77 21.99 2.42 1.14 

193 95041701 0 2 9.86 1 14.08 77 21.22 5.97 1.02 

194 95041702 0 8 10.22 1 14.50 77 20.94 5.88 1.28 

195 9504181r 16 12 31.09 1 15.56 77 18.69 5.08 1.04 

196 9505030u 11 35 31.24 1 15.56 77 17.36 7.77 1.34 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

197 95050304 2 40 42.41 1 15.68 77 19.09 7.85 0.9 

198 95050502 0 49 12.91 1 14.96 77 19.61 6.88 1.05 

199 95050603 3 5 48.77 1 15.75 77 20.04 6.79 1.73 

200 9505070e 15 19 0.03 1 15.34 77 19.83 6.64 0.88 

201 9505150x 23 38 15.54 1 15.29 77 21.80 5.68 1.38 

202 9505191i 17 15 35.94 1 15.78 77 19.58 6.29 0.77 

203 95052111 16 59 51.38 1 14.61 77 21.58 6.58 0.79 

204 95052613 23 33 6.87 1 14.52 77 20.50 7.64 1.24 

205 9505280t 19 13 35.16 1 15.67 77 19.46 6.26 0.97 

206 9506020k 11 22 50.62 1 15.01 77 18.81 5.48 0.92 

207 95060207 10 2 16.48 1 14.76 77 18.76 6.36 0.84 

208 95060210 15 47 42.83 1 15.08 77 18.55 5.29 0.99 

209 9506040d 10 42 15.57 1 15.26 77 21.60 5.06 1.68 

210 9506080b 9 22 49.04 1 14.93 77 19.58 6.07 1.27 

211 95060807 5 36 57.6 1 15.52 77 19.56 6.72 1.27 

212 9506100e 16 0 54.29 1 15.66 77 19.19 7.09 0.84 

213 95061203 4 51 35.76 1 15.86 77 20.05 6.87 0.78 

214 95061405 3 21 14.86 1 15.18 77 20.83 6.41 0.88 

215 95061607 16 9 53.76 1 15.73 77 20.12 7.02 1.14 

216 95061704 4 3 43.81 1 15.83 77 20.20 6.91 1.17 

217 95062108 7 32 3.77 1 14.06 77 23.54 3.25 0.86 

218 9506300k 23 0 21.06 1 15.59 77 18.71 4.52 0.78 

219 9507051o 18 8 27.71 1 14.90 77 19.00 5.61 1 

220 95070516 13 21 30.41 1 14.75 77 20.10 5.68 1.1 

221 9507060n 14 10 5.14 1 14.81 77 19.14 5.93 0.71 

222 9507070h 6 32 50.95 1 14.90 77 18.92 6.06 1.03 

223 95070702 2 42 19.56 1 15.00 77 18.95 5.97 1.15 

224 95071814 12 0 3.28 1 14.22 77 19.75 6.3 1.22 

225 95072503 1 2 12.6 1 15.44 77 20.29 6.93 1.26 

226 95072905 1 30 14.42 1 15.91 77 19.82 6.93 1.02 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

227 95073021 3 30 20.86 1 14.02 77 20.60 5.86 1.48 

228 9507311h 21 44 38.36 1 15.71 77 18.30 7.94 0.98 

229 9508080k 23 56 57.5 1 15.38 77 19.40 5.15 1.4 

230 9508092p 20 7 45.58 1 16.15 77 19.22 7.01 1.37 

231 95081104 2 5 54.25 1 15.79 77 20.16 5.98 1.09 

232 9508162u 12 11 25.34 1 15.62 77 18.99 5.28 1.27 

233 95081717 20 56 18.59 1 15.91 77 19.90 6.97 0.96 

234 9508281t 21 7 55.86 1 15.65 77 20.25 5.74 1.41 

235 9509032o 3 32 35.19 1 15.78 77 21.63 5.79 0.85 

236 9510120y 10 48 42.22 1 15.24 77 21.98 6.03 1.22 

237 9510167f 7 54 45.37 1 14.70 77 21.41 5.52 1.79 

238 9510190s 8 36 5.18 1 15.06 77 21.79 4.38 1.61 

239 9511171g 17 58 25.23 1 15.64 77 20.05 6.26  

240 9511240h 10 2 49.59 1 14.12 77 19.58 6.49 1.29 

241 9512050y 14 15 22.27 1 15.82 77 19.82 6.71 1.56 

242 95120511 14 35 2.29 1 15.78 77 19.48 6.73 1.08 

243 95120615 14 8 1.54 1 15.85 77 19.94 6.7 1.37 

244 9601120j 8 7 41.86 1 15.46 77 20.15 4.09 0.48 

245 96011307 4 54 23.06 1 16.49 77 19.18 6.07 0.56 

246 9601151h 17 28 33.68 1 16.02 77 19.52 6.23 1.22 

247 96011515 14 57 23.42 1 15.96 77 18.98 4.88 0.89 

248 9601310v 16 57 14.46 1 15.84 77 19.40 6.28 0.55 

249 9602051v 11 49 50.85 1 15.41 77 19.32 4.68 0.56 

250 9602160z 9 15 36.48 1 13.90 77 20.22 7.48 1.26 

251 96041608 14 59 57.66 1 16.26 77 19.55 4.76 0.76 

252 9605080t 16 4 20.04 1 15.88 77 19.66 5.95 0.96 

253 9605130e 16 14 22.26 1 16.16 77 19.60 5.37 0.89 

254 9605300b 9 29 26.89 1 13.98 77 20.01 6.49 1.32 

255 96060205 4 48 36.26 1 13.45 77 24.41 3.74 0.59 

256 96080307 1 38 33.01 1 15.48 77 18.72 6.03 0.2 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

257 96081908 8 18 13.95 1 16.03 77 19.86 7.36 0.72 

258 9608260d 10 18 13.78 1 16.60 77 19.89 7.54 0.63 

259 9609011q 9 53 25.29 1 15.90 77 18.93 5.73 1.11 

260 9609100d 5 9 15.4 1 14.46 77 23.50 7.3 0.73 

261 96100909 10 32 15.13 1 16.04 77 19.72 6.22 0.86 

262 9610110f 9 23 52.18 1 14.98 77 20.58 5.49 0.53 

263 9610110l 11 33 45.4 1 15.00 77 20.30 5.44 0.82 

264 9610110o 12 58 37.01 1 14.99 77 20.73 5.05 1 

265 9610110w 14 13 47.34 1 15.04 77 20.28 5.11 0.77 

266 96101119 18 6 53.94 1 14.92 77 20.90 5.56 1.1 

267 9610121q 14 19 20.04 1 16.08 77 20.10 6.23 0.6 

268 96102412 16 8 51.23 1 15.46 77 19.18 4.52 0.54 

269 9610280d 3 46 32.65 1 16.35 77 18.75 6.26 0.98 

270 96102816 19 37 37.17 1 16.55 77 20.87 9.72 0.58 

271 96103107 5 4 19.67 1 15.81 77 18.88 5.33 0.92 

272 9611080s 14 1 5.38 1 16.49 77 21.50 4.47 1.39 

273 9611081e 18 59 19.85 1 16.49 77 21.25 5.35 1.55 

274 96111804 3 8 21.82 1 16.04 77 19.41 6.58 1.06 

275 9701120k 4 14 36.24 1 15.86 77 20.45 6.32 0.56 

276 9701120m 4 15 58.15 1 15.51 77 19.53 4.24 0.3 

277 9701120o 4 16 54.2 1 16.01 77 20.05 5 0.59 

278 9701120p 4 18 6.12 1 15.91 77 19.86 4.17 0.19 

279 9701130c 7 19 12.8 1 15.56 77 19.45 3.51 0.47 

280 97011814 23 41 11.16 1 13.57 77 21.77 3.31 0.44 

281 97012315 9 10 29.88 1 15.69 77 19.52 4.53 0.62 

282 97020201 1 18 52.36 1 14.94 77 20.84 5.8 0.33 

283 97021401 0 23 38.43 1 15.50 77 19.77 5.74 0.72 

284 97022214 17 1 38.43 1 16.44 77 21.49 4.32 0.96 

285 9703020f 9 47 33.51 1 16.12 77 19.74 6.04 1.6 

286 9703051s 18 36 17.66 1 16.50 77 21.49 4.53 0.71 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

287 9703051u 18 47 20.5 1 16.44 77 21.50 4.05 0.99 

288 97030607 3 35 20.26 1 15.77 77 20.04 4.97 0.78 

289 9703085k 17 16 33.56 1 16.39 77 21.50 4.41 1 

290 97031910 20 52 52.68 1 15.74 77 20.53 4.85 0.12 

291 9703220a 4 41 10.77 1 15.93 77 17.22 7.81 0.72 

292 97032213 15 19 10.89 1 16.14 77 21.52 3.9 1.09 

293 9704040m 14 0 15.32 1 15.64 77 21.11 4.01 0.6 

294 9704041b 22 10 38.71 1 15.55 77 21.24 3.77 0.52 

295 9704140r 11 58 35.85 1 15.90 77 19.00 4.94 0.76 

296 97041500 0 27 56.06 1 16.19 77 20.35 6.56 0.98 

297 9704171f 14 4 17.35 1 16.12 77 19.80 7.89 0.92 

298 97041818 16 35 35.94 1 16.30 77 21.48 4.65 0.71 

299 97042112 13 58 54.9 1 15.52 77 19.39 4.01 0.59 

300 9704290n 16 21 46.33 1 16.39 77 21.35 4.78 1.28 

301 9704300z 22 45 18.55 1 15.90 77 19.98 5.39 1.11 

302 97051126 20 17 30.31 1 15.89 77 19.36 5.48 0.87 

303 9705197t 18 29 47.13 1 14.90 77 21.05 5 0.66 

304 9705215h 18 26 48.84 1 16.19 77 18.87 7.72 0.93 

305 9705221s 12 24 21.83 1 16.45 77 21.34 5.13 0.83 

306 9705221z 16 56 45.56 1 16.50 77 21.37 4.66 1.03 

307 9705260c 10 42 3.64 1 16.42 77 21.49 4.37 0.85 

308 97060300 0 3 43.92 1 14.58 77 20.97 5.67 0.91 

309 9706170l 16 16 0.47 1 16.43 77 21.29 4.67 0.93 

310 9706220t 13 51 58.77 1 16.46 77 21.48 4.83 0.76 

311 9706260g 12 31 33.38 1 16.60 77 21.13 6.43 0.96 

312 970718im 16 20 28.54 1 16.37 77 21.64 5.26 1.36 

313 9708215i 16 27 31.44 1 16.10 77 21.41 3.84 1.1 

314 97091214 15 46 44.68 1 16.28 77 20.98 5.83 1.3 

315 9709130a 7 32 32.41 1 16.20 77 21.11 2.9 0.76 

316 97092000 0 23 11.71 1 12.83 77 24.00 3.59 0.75 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

317 971226by 14 50 23.09 1 16.35 77 21.58 4.37 1.06 

318 9712260f 0 40 59.47 1 15.64 77 19.84 5.04 0.85 

319 9712261y 4 24 19.56 1 14.02 77 23.30 1.51 0.4 

320 9801201o 15 18 52.38 1 16.41 77 21.65 4.74 0.97 

321 9801271m 14 40 59.48 1 16.06 77 21.31 4.07 0.97 

322 98012723 17 11 38.08 1 15.87 77 19.94 5.56 0.79 

323 9802031a 10 19 5.13 1 16.30 77 21.63 4.11 0.92 

324 98020406 2 13 15.67 1 15.53 77 20.36 5.7 0.91 

325 9802181m 11 52 19.53 1 15.51 77 20.35 4.71 0.17 

326 98021906 4 25 45.54 1 14.08 77 20.89 5.08 0.62 

327 98021927 13 58 14.05 1 13.10 77 23.12 1.97 0.66 

328 9802220d 11 8 34.47 1 13.76 77 21.80 2.46 0.18 

329 9802230t 10 22 26.47 1 15.48 77 19.50 5.8 0.31 

330 9802231m 18 18 16.56 1 13.05 77 21.78 0.95 1.08 

331 9802231w 22 47 31.74 1 15.31 77 21.15 5.13 0.21 

332 98030101 0 39 24.79 1 15.33 77 20.59 4.9 0.33 

333 9803040u 7 22 2.56 1 14.99 77 20.26 5.08 0.41 

334 98030610 9 31 8.92 1 15.43 77 17.82 8.06 0.83 

335 98031810 8 16 7.16 1 13.23 77 20.67 5.12 0.46 

336 9804090e 4 56 18.63 1 15.57 77 18.58 9.75 1.07 

337 9804145q 22 4 57.32 1 14.10 77 21.15 3.45 0.43 

338 98042908 8 34 5.08 1 15.90 77 19.85 6.63 0.59 

339 98052509 6 5 1.15 1 15.77 77 19.55 8.35 1.45 

340 98052555 17 19 14.44 1 14.86 77 21.30 5.6 0.28 

341 98052708 4 12 55.77 1 14.58 77 21.25 6.01 0.6 

342 98052968 15 39 6.52 1 16.38 77 21.49 4.39 0.86 

343 9806020o 11 25 0.02 1 13.06 77 21.71 1.36 0.18 

344 9806111j 16 51 3.57 1 14.60 77 20.32 6.8 0.41 

345 9806267m 19 22 21.1 1 17.06 77 18.60 9.02 0.37 

346 98071300 1 25 42.47 1 15.74 77 20.53 4.87 0.73 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

347 980716a6 22 51 39.17 1 13.34 77 21.60 4.02 0.87 

348 980722dm 15 42 31.17 1 15.64 77 19.87 6.01 0.12 

349 980722dn 15 42 56.99 1 15.63 77 19.26 5.01 0.53 

350 98072332 14 22 14.91 1 15.79 77 19.97 5.47 0.75 

351 9807254m 15 52 55.51 1 15.41 77 20.29 5.04 0.67 

352 9808100e 5 20 34.22 1 13.92 77 21.24 4.39 0.18 

353 9808155v 14 49 40.29 1 16.44 77 21.57 4.39 1.12 

354 98081669 17 44 34 1 16.10 77 18.80 6.44 1.02 

355 9808210e 1 57 10.92 1 11.94 77 21.16 4.1 0.51 

356 98082350 11 5 59.96 1 14.89 77 20.48 3.57 0.55 

357 9808270j 4 14 53.18 1 13.31 77 21.94 0.51 0.4 

358 9903124s 19 38 36.76 1 15.45 77 19.61 5.67 0.39 

359 9903220l 13 3 12.3 1 12.80 77 21.88 5.81 0.2 

360 9903265q 15 18 43.27 1 14.25 77 23.46 4.41 0.26 

361 9903295r 22 37 17.79 1 15.18 77 19.20 5.84 0.28 

362 99042529 23 35 39.58 1 16.24 77 18.41 7.25 1.06 

363 9905040e 9 19 30.05 1 13.14 77 24.91 6.09 0.55 

364 9905089i 16 19 49.5 1 15.79 77 17.16 6.58 0.37 

365 9905230s 11 17 30.49 1 15.82 77 19.25 4.75 0.79 

366 99061400 2 7 19.43 1 16.61 77 19.62 6.54 1.21 

367 99062600 0 4 53.19 1 15.76 77 19.96 5.73 0.27 

368 99062664 16 53 16.77 1 15.35 77 19.59 5.18 0.96 

369 9906290e 2 37 22.16 1 15.32 77 17.62 7.32 0.52 

370 9907124z 15 39 44.7 1 16.57 77 19.59 9.14 1.01 

371 99071608 6 30 19.68 1 16.49 77 19.95 7.65 1.24 

372 9912026n 16 11 46.71 1 15.80 77 19.52 7.03 1.27 

373 9912080m 8 43 6.03 1 17.51 77 19.88 7.26 0.75 

374 99121002 2 8 31.09 1 15.43 77 19.55 6.02 1.28 

375 9912292d 14 9 58.08 1 13.44 77 21.61 2.08 0.92 

376 10636 21 16 46.25 1 15.87 77 19.87 7.91 1.54 
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Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

377 0001200d 3 39 56.05 1 16.62 77 24.05 3.86 0.97 

378 12064 23 17 40.39 1 15.98 77 19.48 7.99 0.77 

379 22703 2 21 8.08 1 13.44 77 21.56 2.16 1.06 

380 0002281l 8 28 58.14 1 13.27 77 21.74 0.8 0.92 

381 30409 5 40 8.09 1 16.13 77 19.48 7.96 0.83 

382 31312 7 45 23.85 1 13.44 77 21.92 1.17 0.29 

383 000406ch 23 41 31.81 1 15.27 77 19.74 8.18 1.76 

384 41010 4 44 58.79 1 16.47 77 19.95 6.56 0.75 

385 0004105v 23 48 58.18 1 12.98 77 23.18 2.44 0.41 

386 41910 5 38 16.2 1 15.85 77 18.36 6.08 0.97 

387 0004205y 12 28 21.21 1 15.41 77 17.20 7.96 1.4 

388 0004207l 21 12 32.92 1 12.13 77 20.38 4.94 0.44 

389 0005011d 12 1 27.06 1 16.25 77 19.82 5.24 0.56 

390 0006040g 0 51 12.26 1 15.87 77 17.20 8.41 0.94 

391 0006177b 21 7 5.56 1 16.72 77 19.09 8.11 1.18 

392 000630g4 19 38 43.31 1 16.21 77 20.60 6.01 0.68 

393 72202 3 3 31.18 1 15.77 77 19.36 6.14 0.33 

394 0007313o 15 59 5.85 1 15.25 77 17.73 7.49 0.81 

395 0008023z 15 18 44.3 1 15.45 77 17.59 7.65 1.34 

396 000804cd 21 14 14.18 1 16.60 77 18.24 8.16 0.73 

397 0008055b 19 57 30.16 1 15.39 77 19.40 9.3 0.98 

398 0008233j 22 32 16.1 1 15.92 77 19.97 5.35 1.21 

399 010620a4 21 20 52.23 1 15.32 77 19.56 5.48 0.38 

400 0105110u 5 8 35.44 1 16.41 77 20.98 6.71 0.96 

401 0105144s 20 49 43.72 1 17.67 77 19.48 7.74 0.69 

402 0106018k 18 20 56.83 1 16.34 77 20.09 6.48 0.85 

403 010612es 22 54 11.25 1 16.33 77 20.19 5.1 0.48 

404 1061660 19 4 5.17 1 16.26 77 19.92 7.7 0.76 

405 0106194v 14 19 4.25 1 14.83 77 19.63 7.61 1.15 

406 1062000 0 40 32.07 1 14.63 77 19.40 6.34 1.03 



 153

Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

407 1062011 8 10 54.12 1 15.35 77 17.81 6.91 0.82 

408 1050124 7 54 12.25 1 16.24 77 20.06 5.5 0.84 

409 1093008 4 18 56.9 1 16.33 77 20.66 4.53 0.5 

410 0107135l 22 23 58.53 1 16.38 77 18.63 5.46 1.1 

411 010820ac 13 15 4.03 1 16.18 77 20.27 5.72 1.01 

412 010820ae 13 16 5.07 1 15.97 77 20.19 6.74 1.01 

413 0108220h 2 2 45.86 1 16.22 77 18.09 6.05 0.79 

414 0108220n 2 44 33.22 1 16.34 77 18.42 5.86 0.6 

415 0109031h 11 43 39.2 1 15.39 77 17.02 8.13 0.86 

416 1091105 3 58 6.63 1 16.85 77 18.39 7.8 0.83 

417 0109110b 4 59 52.41 1 16.75 77 18.25 7.82 0.78 

418 0107135e 21 27 22.48 1 16.67 77 18.87 5.73 1.1 

419 0110121k 16 11 44.06 1 16.29 77 20.73 4.56 0.78 

420 1100915 9 23 10.31 1 16.26 77 20.95 4.97 1.06 

421 1100121 16 11 43.89 1 16.44 77 20.67 5.28 0.72 

422 1101404 2 54 33.92 1 12.90 77 22.98 4.98 0.17 

423 011031ap 20 6 22.49 1 15.25 77 24.14 8.17 0.9 

424 0111083p 11 6 49.79 1 12.71 77 23.34 4.24 0.11 

425 1111605 2 49 40.08 1 16.68 77 19.83 6.05 1.77 

426 0111173k 18 48 53.01 1 16.69 77 18.98 8.76 1.28 

427 011202io 21 28 38.14 1 15.76 77 18.52 7.65 0.93 

428 1121110 9 38 34.27 1 13.90 77 20.85 5.95 0.09 

429 0112182h 20 48 9.43 1 14.83 77 19.34 6.04 0.95 

430 0112201v 23 7 7.23 1 16.47 77 20.58 4.8 0.89 

431 0203140r 19 11 54.23 1 13.13 77 20.75 5.92 0.1 

432 0204080a 5 8 14.6 1 13.39 77 21.56 0.78 0.74 

433 0204083g 15 41 50.2 1 15.11 77 19.57 5.36 0.67 

434 2041705 5 32 14.59 1 13.69 77 21.67 2.38 0.74 

435 2041900 2 54 54.01 1 13.72 77 21.38 3.27 0.16 

436 0206101y 9 56 18.8 1 13.13 77 21.84 4.13 -0.03 



 154

Code Origin Time Latitude Longitude Depth 
N 

yymmddx H M S Deg. Min. Deg. Min. km 
Mag. 

437 2061026 10 14 23.02 1 13.41 77 22.08 1.41 0.22 

438 2061031 11 59 25.86 1 13.28 77 22.15 2.65 0.1 

439 0206103a 12 21 12.49 1 13.34 77 22.07 2.29 -0.13 
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APPENDIX C. PROGRAM CODE 

The C++ code written for solving the coda waves’ envelopes inversion problem by 

means of the Back-Projection algorithm is attached. A free version of Borland C++ 

(BuilderX [3]) and a commercial compiler as Microsoft Visual C++ [4] was used to 

assure a high compatibility. The program reads data from text files. How data is 

organized is easily deduced by reading the program. 



AC-1

/**************************************************************************\
* *
* BACKPROJECTION ALGORITHM *
* *
\**************************************************************************/

##definedefine PIMITJ 1.570796326794896619231322
##definedefine PI 3.141592654

##includeinclude <stdlib.h>
##includeinclude <string.h>
##includeinclude <stdio.h>
##includeinclude <math.h>
##includeinclude <malloc.h>
##includeinclude <time.h>
##includeinclude <dos.h>
##includeinclude "nrutil2.h"
##includeinclude "fresnel.h"

voidvoid main(voidvoid)
{

FILE *fp, *fp2;
FILE *fp1,*fp3;
charchar buffer[10];
intint i, j, k, ns, nt, t, n, m, s,count=0, ii, jj, kk, radi, int_ssx, int_ssy, ch;
intint int_x, int_y, *nr,nrr;
intint ndat,num, num1,num2,rec,cuenta_elipses;
unsignedunsigned charchar **IMA;
floatfloat **res,*b;
longlong intint nx,ny,nz;
doubledouble cx1,cy1,cx2,cy2,dt,cz,vmax=0.0,vmin=0.0, vmed=0.0,alea;
doubledouble *sx,*sy,*sz,*ex,*ey,*ez,*time,dato, *vec, *a, *af;
doubledouble x, y, z, ssx, ssy,ssz,correccio_alsada;
doubledouble lx, ly, unitat_x, unitat_y, unitat_z, escala_y, escala_y2, escala_z, escala_z2;
doubledouble velocitat1, velocitat2,temps,distancia1,distancia2,distancia,tempo;
doubledouble tini;
doubledouble semi_a,semi_b,exc, r, L, area, valor_mig, factor_elipse, cont;

/****************************************************
***** DEFINITION OF IMPORTANT VARIABLES ****
****************************************************

(cx1,cy1) origin coordinates
(cx2,cy2) end coordinates
cz maximum depth
nx number of blocks direction x
ny number of blocks direction y
nz number of blocks direction z
ns number of seismografs
nt number of events
t maximum number of time intervals
dt time interval

(sx[],sy[],sz[]) coordinates of seismograms

(ex[],ey[],ez[]) coordinates of events

nr[] number of residues for each event
vec[] residues of one event
a[] result of inversion

vmax maximum of a[]
vmin minimum of a[]
vmed average of a[]

unitat_x longitutude of a block in x direction
unitat_y longitutude of a block in y direction
unitat_z longitutude of a block in z direction



AC-2

cuenta_elipses number of residues of a certain block

********************************************************************/

printf("/********************************************************/\n");
printf("/* */\n");
printf("/* BACKPROJECTION IN ACTION */\n");
printf("/* */\n");
printf("/* Version 2.0 */\n");
printf("/* */\n");
printf("/* Observatori de l'Ebre */\n");
printf("/* */\n");
printf("/* By: Eduard Carcol%c */\n",130);
printf("/* */\n");
printf("/********************************************************/\n");

printf("\n\n\t Press any key to continue....\n\n");
getchar();

printf("\n\n\tVELOCITY MODEL:\n\n");

printf("\n\t z = 4.2 v = %.2f ",velocity1(4.2));
printf("\n\t z = 3.2 v = %.2f ",velocity1(3.2));
printf("\n\t z = 2.2 v = %.2f ",velocity1(2.2));
printf("\n\t z = 1.0 v = %.2f ",velocity1(1.0));
printf("\n\t z = 0.2 v = %.2f ",velocity1(0.2));
printf("\n\t z = -2.0 v = %.2f ",velocity1(-2.0));
printf("\n\t z = -3.8 v = %.2f ",velocity1(-3.8));
printf("\n\t z = -10 v = %.2f ",velocity1(-10.0));
printf("\n\t z = -21.8 v = %.2f ",velocity1(-21.8));
printf("\n\t z = -30 v = %.2f ",velocity1(-30));
printf("\n\t z = -39.8 v = %.2f ",velocity1(-39.8));
printf("\n\t z = -50.0 v = %.2f ",velocity1(-50.0));

printf("\n\n\n\n\n\tPress any key to continue....\n\n");
getchar();

/**** open and read data ****/

fp=fopen("datos.dat","r");

fscanf(fp,"%lf",&cx1);fscanf(fp,"%lf",&cy1);
fscanf(fp,"%lf",&cx2);fscanf(fp,"%lf",&cy2);
fscanf(fp,"%lf",&cz);

fscanf(fp,"%li",&nx); fscanf(fp,"%li",&ny); fscanf(fp,"%li",&nz);

fscanf(fp,"%i",&ns);

fscanf(fp,"%i",&nt);

fscanf(fp,"%i",&t);

fscanf(fp,"%lf",&dt);

/**** memory allocation ****/

sx =(doubledouble *) dvector (ns);
sy =(doubledouble *) dvector (ns);
sz =(doubledouble *) dvector (ns);
ex =(doubledouble *) dvector (nt);
ey =(doubledouble *) dvector (nt);
ez =(doubledouble *) dvector (nt);
a = (doubledouble *)dvector(nx*ny*nz);
b = (floatfloat *)dvector(nx);
af = (doubledouble *)dvector(nx*ny*nz);
res = (floatfloat **) hfmatrix(0, nt*ns ,0,t);
vec = (doubledouble *) dvector(t);
time =(doubledouble *) dvector (ns*nt);
IMA = (unsignedunsigned charchar **)hcmatrix(0,ny,0,nx);
nr = (intint *) ivector(0,ns*nt);
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ifif(sx == NULL || sy == NULL || sz == NULL
|| ex == NULL || ey == NULL || ez == NULL
|| time == NULL || a == NULL || vec == NULL || res == NULL || IMA == NULL
|| af == NULL || nr == NULL)

{printf("oooooh!!!!!");exit(0);}

/**** reading coordinates of stations ****/

forfor(i=0;i<ns;i++){
fscanf(fp,"%lf",&dato);sy[i]=dato;
fscanf(fp,"%lf",&dato);sx[i]=dato;
fscanf(fp,"%lf",&dato);sz[i]=dato;

}

/**** reading coordinates of events ****/

forfor(i=0;i<nt;i++){
fscanf(fp,"%lf",&dato);ex[i]=dato;
fscanf(fp,"%lf",&dato);ey[i]=dato;
fscanf(fp,"%lf",&dato);ez[i]=dato;

}

fclose(fp);

/**** screen output of data ****/

printf("\ncx1 = %lf;",cx1);
printf(" cy1 = %lf", cy1);
printf("\ncx2 = %lf;",cx2);
printf(" cy2 = %lf", cy2);
printf("\ncz = %lf; ",cz);
printf("\nnx = %li;",nx);
printf(" ny = %li ; ",ny);
printf("nz = %li; ",nz);
printf("\nns = %i;",ns);
printf(" nt = %i",nt);
printf("\nt = %i;",t);
printf(" dt = %lf",dt);

printf("\n\n") ;

forfor(i=0;i<ns;i++){
printf("\rsx = %lf; sy = %lf; sz = %lf",sx[i],sy[i],sz[i]);

}

printf("\n\n");

forfor(i=0;i<nt;i++){
printf("\rex = %lf; ey = %lf; ez = %lf",ex[i],ey[i],ez[i]);

}

printf("\n");

/**** opening file of residues ****/

fp=fopen("residual.dat","r");

/**** reading number of events ****/

fscanf(fp,"%i",&ndat);
printf("\n ndat = %i",ndat);

/**** reading residues ****/

rec = 4;
forfor(i=0;i<nt;i++){

forfor(j=1;j<(ns+1);j++){

fscanf(fp,"%i",&num);
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fscanf(fp,"%i",&num2);
fscanf(fp,"%i",&nrr);
fscanf(fp,"%lf",&tini);

forfor(k=0;k<nrr;k++) {fscanf(fp,"%lf",&dato); vec[k]=dato; }

count=count+1;

ifif(count>ndat) breakbreak;

ifif(num > rec && j!=1) i++;

ifif(num2 != j ) {
j=num2;

time[(j-1)+i*ns]=tini;
nr[(j-1)+i*ns] = nrr;
forfor(k=0;k<nrr;k++) res[(j-1)+i*ns][k]=vec[k];

}
elseelse {

time[(j-1)+i*ns]=tini;
nr[(j-1)+i*ns] = nrr;
forfor(k=0;k<nrr;k++) res[(j-1)+i*ns][k]=vec[k]; }

printf("\rSisme = %d; Sismog. = %d; T_Ini = %.1lf; N_Sismes = %d; N_Sismog. =
%d"

,num,num2,tini, i,j);
rec = num;

}
}

fclose(fp);

/**** computation starts *****/

printf("\n\n\nCalculating...\n\n");

/**** definitions and conversions ****/

cx1 = cx1*111.0; cx2 = cx2*111.0; cy1 = cy1*111.0; cy2 = cy2*111.0;
lx = cx2-cx1; ly = cy2-cy1;

/**** adimensional lengths ****/

unitat_x = lx/nx;
unitat_y = ly/ny;
unitat_z = cz/nz;

escala_y = unitat_y/unitat_x;
escala_z = unitat_z/unitat_x;

escala_y2= escala_y*escala_y;
escala_z2= escala_z*escala_z;

/**** screen output of units of length ****/

printf("\nunitat_x = %lf; ",unitat_x); printf("unitat_y = %lf; ",unitat_y);
printf("unitat_z = %lf\n",unitat_z);
printf("\nescala_y = %lf; ",escala_y); printf("escala_z = %lf; ",escala_z);
printf("\n\n");

/************************* INVERSION ******************************************/
/************************ n number of events *************************/
/************************ m number of time intervals *************************/
/************************ i corresponds to x *************************/
/************************ j corresponds to y *************************/
/************************ k corresponds to z *************************/

/**** output to file resultat.txt in text format ****/

fp = fopen("resultat.txt","w");
fprintf(fp,"%li\n", nx*ny*nz );
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printf("\n");
fprintf(fp,"\n");

/* definition of a parameter that indicates the minimum depth of the computation */

correccio_alsada = 4.5/unitat_z;

//correccio_alsada = 0.0;

forfor(k=0;k<nz;k++){ printf("seccio %i\r",k);

ifif(k==0){
correccio_alsada = 4.5/unitat_z;

} elseelse {
correccio_alsada = 5.0/unitat_z;

}

forfor(j=0;j<ny;j++){
forfor(i=0;i<nx;i++){

a[i+j*nx+k*ny*nx]=0.0;
cont =0;

cuenta_elipses = 0;

forfor (n=0;n<nt;n++){

x = ex[n]*111.0; y = ey[n]*111.0; z = ez[n];

velocitat2 =
velocity2((-1.0)*(k-correccio_alsada+0.5)*unitat_z,z)/unitat_x;

x = (x-cx1)/unitat_x;
y = (y-cy1)/unitat_y;
z = z /unitat_z;

forfor(s=0;s<ns;s++){

ifif(time[n*ns+s]<0.1) continuecontinue;

ssx = sx[s]*111.0; ssy = sy[s]*111.0; ssz = sz[s];

velocitat1 = velocity2((-1.0)
*(k-correccio_alsada+0.5)*unitat_z,ssz)/unitat_x;

ssx = (ssx-cx1)/unitat_x;
ssy = (ssy-cy1)/unitat_y;
ssz = (ssz)/unitat_z;

/**** distance HYPOCENTER-STATION ****/

r = sqrt( pow(x-ssx,2)
+escala_y2*pow(y-ssy,2)
+escala_z2*pow(z-ssz,2));

/**** distance HIPOCENTER-BLOCK (i,j) ****/

distancia2 = sqrt( pow(x-(i+0.5),2)
+ escala_y2*pow(y-(j+0.5),2)
+ escala_z2*pow(z-(-1.0)*(k-correccio_alsada+0.5),2));

/**** distance STATION-BLOCK (i,j) ****/

distancia1 = sqrt( pow(ssx-(i+0.5),2)
+ escala_y2*pow(ssy-(j+0.5),2)
+ escala_z2*pow(ssz-(-1.0)*(k-correccio_alsada+0.5),2));

/**** parameters ****/

L = distancia1 + distancia2;
exc = r/L;semi_b = L/2.0;
semi_a = sqrt(pow(semi_b,2)-pow((r/2.0),2));
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area = 2.0*PI*semi_a*semi_a + 2.0*PI*(semi_a*semi_b/exc)*asin(exc);
valor_mig = (4.0*PI/(L*r))*log((L+r)/(L-r));
valor_mig = valor_mig/area;
factor_elipse = (pow(1.0/(distancia1*distancia2),2)/valor_mig);

/**** time corresponding to event n of station s ****/

tempo = distancia1 / velocitat1 + distancia2/velocitat2;

/**** number tof the residue to needed for average ****/

m = ceil( (tempo-(time[n*ns+s]+dt/2.0))/dt );
t = nr[n*ns+s];

/**** average ****/

ifif(m>=1 && m<t){
temps = time[n*ns+s]+dt/2.0+m*dt;
a[i+j*nx+k*ny*nx] = a[i+j*nx+k*ny*nx]

+(factor_elipse)*( res[n*ns+s][m]*(temps-tempo)
+ res[n*ns+s][m-1]* ( tempo-(temps-dt) ))/dt;

cont = cont + factor_elipse;
cuenta_elipses++;

}
}

}

ifif (cont != 0) a[i+j*nx+k*ny*nx] = a[i+j*nx+k*ny*nx]/(cont*1.0);
elseelse a[i+j*nx+k*ny*nx]=1.0;

/**** Counting residues instead of inversion ****/

// if(cont < 10) a[i+j*nx+k*ny*nx] = 0.0;
// a[i+j*nx+k*ny*nx]=cuenta_elipses;

}
}

}

/**** statistics of inversion ****/

forfor(k=0;k<nz;k++){
forfor(j=0;j<ny;j++){

forfor(i=0;i<nx;i++){
vmed = vmed + a[i+j*nx+k*ny*nx]/(nx*ny*nz*1.0);

ifif(vmax<a[i+j*nx+k*ny*nx]) vmax=a[i+j*nx+k*ny*nx];
ifif(vmin>a[i+j*nx+k*ny*nx]) vmin=a[i+j*nx+k*ny*nx];

}
}

}

/**** output to text file ****/

forfor(k=0;k<nz;k++){
forfor(j=0;j<ny;j++){

forfor(i=0;i<nx;i++){
fprintf(fp,"%lf\n ",a[i+j*nx+k*ny*nx]);

}
}

}
fprintf(fp,"\n");
fclose(fp);

/****************************************************************/

/**** Output to binary file ****/

fp3 = fopen("resultat.raw","wb");

forfor(k=0;k<nz;k++){
forfor(j=0;j<ny;j++){

forfor(i=0;i<nx;i++){
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b[i] = a[i+j*nx+k*ny*nx];
}
fwrite(b,sizeofsizeof(floatfloat),nx,fp3);

}
}
fclose(fp3);

/**** Files for Surfer ****/
/**** horitzontal sections ****/

printf("\n");
forfor(n=0;n<nz;n++){

sprintf(buffer, "secc%i.dat", n);
printf("%s\r",buffer);
fp=fopen(buffer,"w");

forfor(i=0;i<nx;i++){
forfor(j=0;j<ny;j++){
fprintf(fp,"%lf %lf %f\n",

(cx1 + ((cx2-cx1)/nx)*i + ((cx2-cx1)/nx)/2.0)/111.0,
(cy1+((cy2-cy1)/ny)*j+((cy2-cy1)/ny)/2.0)/111.0,
a[i+j*nx+n*ny*nx]-1.0);

}
}

fclose(fp);

}

/**** Vertical sections ****/

printf("\n");
forfor(j=0;j<ny;j++){

sprintf(buffer, "tall%i.dat", j);
printf("%s\r",buffer);
fp=fopen(buffer,"w");

forfor(i=0;i<nx;i++){
forfor(n=0;n<nz;n++){
fprintf(fp,"%lf %lf %f\n",

(cx1+((cx2-cx1)/nx)*i+((cx2-cx1)/nx)/2.0)/111.0,
(n*cz/nz + 0.5*cz/nz),
a[i+j*nx+n*ny*nx]-1.0);

}
}

fclose(fp);

}

printf("\n vmax = %lf, vmin = %lf, vmed = %lf", vmax, vmin, vmed);

fp=fopen("resultat.txt","a");
fprintf(fp,"\n vmax = %lf, vmin = %lf, vmed = %lf", vmax, vmin, vmed);
fclose (fp);

/**** conversion inversion to .RAW image (for Photoshop) ****/

forfor(k=0;k<nz;k++){
forfor(j=0;j<ny;j++){

forfor(i=0;i<nx;i++){
af[i+j*nx+k*ny*nx] = a[(nx-1-i)+(ny-1-j)*nx+k*ny*nx];

}
}

}

forfor(k=0;k<nz;k++){
forfor(j=0;j<ny;j++){

forfor(i=0;i<nx;i++){
a[i+j*nx+k*ny*nx] = af[i+j*nx+k*ny*nx];
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}
}

}

/**** Horizontal seccions ****/

printf("\n");
forfor(n=0;n<nz;n++){

sprintf(buffer, "secc%i.raw", n);
printf("%s\r",buffer);
fp=fopen(buffer,"wb+");

forfor(i=0;i<nx;i++){
forfor(j=0;j<ny;j++){
IMA[j][i]=255.0*(a[i+j*nx+n*nx*ny]-vmin)/(vmax-vmin);
}

}

forfor ( i=0; i<ny; i++ ) fwrite((voidvoid*)IMA[i], 1, nx, fp);
fclose(fp);

}

/**** vertical sections ****/

printf("\n");
forfor(j=0;j<ny;j++){

sprintf(buffer, "tall%i.raw", j);
printf("%s\r",buffer);
fp=fopen(buffer,"wb+");

forfor(i=0;i<nx;i++){
forfor(n=0;n<nz;n++){
IMA[n][i]=255.0*(a[i+j*nx+n*nx*ny]-vmin)/(vmax-vmin);
}

}
forfor ( i=0; i<nz; i++ ) fwrite((voidvoid*)IMA[i], 1, nx, fp);

fclose(fp);
}

/*********************************************/

}

/**** computes average of two velocities ****/

doubledouble velocity2 (doubledouble z1,doubledouble z2){

returnreturn((velocity1(z1)+velocity1(z2))/2.0);

}

/***** velocity at a certain depth (by interpolating) ****/

doubledouble velocity1 (doubledouble z){

ifif( z>=4.2 )
returnreturn (1.966);

elseelse ifif( z<4.2 && z>= 2.2 )
returnreturn ( ((1.966-2.079)/2.0)*z + 1.966 - ((1.966-2.079)/2.0)*4.2 );

elseelse ifif( z<2.2 && z>=0.2 )
returnreturn( ((2.079-2.247)/2.0)*z + 2.079 - ((2.079-2.247)/2.0)*2.2 );

elseelse ifif( z<0.2 && z>=(-3.8))
returnreturn( ((2.247-3.371)/4.0)*z + 2.247 - ((2.247-3.371)/4.0)*0.2 );
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elseelse ifif( z<(-3.8) && z>=(-21.8))
returnreturn( ((3.371-3.820)/18.0)*z+ 3.371 - ((3.371-3.820)/18.0)*(-3.8) );

elseelse ifif(z<(-21.8) && z>=(-39.8))
returnreturn( ((3.820-4.494)/18.0)*z+ 3.820 - ((3.820-4.494)/18.0)*(-21.8) );

elseelse ifif(z<(-39.8))
returnreturn(4.494);

}
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S U M M A R Y
The 3-D spatial distribution of relative scattering coefficients in southern India was estimated
by means of an inversion technique applied to coda wave envelopes. The inversion analysis
was performed for the first time in this kind of seismological research by means of the simul-
taneous iterative reconstruction technique and filtered backprojection method. Whereas the
first one allows to obtain more exact solutions, the second one is a much faster non-iterative
algorithm that has proved to provide very accurate reconstructions. Data used consisted of se-
lected 636 vertical-component, short-period recordings of microearthquake codas from shallow
earthquakes with magnitudes ranging from 0.7 to 3.7 and epicentral distances up to 120 km
recorded by the Gauribidanur seismic array (GBA). Results are almost independent of the
inversion method used and they are frequency dependent. They show a remarkably uniform
distribution of the scattering strength in the crust around GBA. However, a shallow (0–24 km)
strong scattering structure, which is only visible at low frequencies, seems to coincide with
the Closepet granitic batholith which is the boundary between the eastern and western parts
of the Dharwar craton.

Key words: crustal heterogeneity, inversion analysis, scattering coefficient, seismic coda,
southern India.

1 I N T RO D U C T I O N

The behaviour of coda waves in seismograms is one of the observa-
tions supporting the existence of small-scale random heterogeneities
in the Earth (Aki 1969; Aki & Chouet 1975; Sato et al. 2002). The
direct S wave observed in a seismogram from a local earthquake is
followed by complex wave trains with amplitudes smaller than the
direct wave and that exponentially decay with time, which are called
S-coda. It is widely accepted that coda waves are formed by super-
position of incoherent scattered waves from randomly distributed
heterogeneities in the lithosphere, such as cracks, faults, folds, and
velocity or density anomalies with scale length about the seismic
wavelength. S-coda waves have an envelope shape common to all
epicentres and stations in a given region after twice the S wave trav-
eltime (Rautian & Khalturin 1978). Total scattering coefficient (g)
and coda attenuation (Q−1

c ) are the parameters, which characterize
the coda excitation (which measures the capacity of the medium to
originate scattering) and the decay rate of coda envelopes (which is a
measure of the attenuation of the medium) within a given frequency
band, respectively.

A number of models have been proposed to relate scattering and
coda wave amplitudes. One approach to model the coda envelopes
is to consider the heterogeneities as randomly and uniformly dis-

tributed point-like scatterers. Using this model and on the basis of
the energy transport (or radiative transfer) theory (Wu 1985), the
S-wave coda has been synthesized under the assumption of single
isotropic scattering (SIS) (Sato 1977), multiple isotropic scattering
(Hoshiba 1991; Zeng et al. 1991) and multiple non-isotropic scat-
tering (Hoshiba 1995; Sato 1995).

On the other hand, scattering from randomly and non-uniformly
distributed heterogeneities has also been studied to explain the fea-
tures of the observed envelopes of S coda waves. Nishigami (1991)
developed an inversion method of coda waveforms from local earth-
quakes to estimate the inhomogeneous spatial distribution of relative
scattering coefficients in the crust. The method is based on the as-
sumption that the fluctuation of the decay curve of the observed
coda envelope from a reference curve, which was estimated by as-
suming SIS and spherical radiation from the source, is caused by a
non-uniform distribution of scatterers in the crust. This method has
proved to be an effective approach to investigate the real heteroge-
neous structure in the crust of several regions in the world: Nishigami
(1991) detected zones of strong scattering related to major active
faults in central Japan; Nishigami (1997) revealed significant het-
erogeneous structures in the crust around one active fault system and
two active volcanoes in central Japan; and Nishigami (2000) showed
the segmentation structure along the San Andreas fault system in
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central California. Chen & Long (2000), in the Piedmont Province
of central Georgia, found a correlation at shallow depths between
zones of strong scattering and the location of hypocentres and areas
with greater topographic relief, and were able to identify a strong
reflecting layer which was consistent with a thrust plain previously
reported using other geophysical methods. More recently, Asano &
Hasegawa (2004) suggested the correlation between large scatter-
ing zones with the existence of fault-damaged zones in southwestern
Japan, as well as other scattering properties of the region at different
depths.

Several inversion methods have been used in order to obtain the
strength of the scattering coefficients. Whereas Nishigami (1991)
solved the problem using a standard inversion method, Nishigami
(1997, 2000) used a recursive stochastic inversion method, and
Chen & Long (2000) solved the inversion problem using the al-
gebraic reconstruction technique (ART). On the other hand, Asano
& Hasegawa (2004) revised the inversion analysis and obtained ab-
solute values of the scattering coefficients by considering a depth
dependent velocity structure and double-couple sources, and assum-
ing an intrinsic absorption parameter.

The aim of this paper is to perform a coda envelope inversion
analysis to microearthquake recordings by the Gauribidanur seismic
array (GBA) to estimate a 3-D distribution of relative scattering
coefficients in southern India. We will follow the method presented
by Nishigami (1991). This method implies a previous knowledge of
the depth dependent velocity model and it assumes a synthetic SIS
model for the absolute reference scattering coefficients (Sato 1977).
The observed data will be inverted using two different algorithms
that are commonly used in biomedical applications but that have
not been used previously in this kind of seismological applications:
the simultaneous iterative reconstruction technique (SIRT) and the
filtered backprojection (FBP) method. The first one allows to obtain
better reconstructions than other inversion algorithms, however, it
is slower. On the other hand, the FBP is a non-iterative method that
has proved to provide fast and accurate solutions.

2 M E T H O D S

2.1 The observation equation

Sometimes, the observed envelopes of S coda waves differ from
those synthesized by models based on the hypothesis of uniform
distribution of scatterers (e.g. Aki & Chouet 1975; Sato 1977).
Small amplitude fluctuations or ripples overlying on a smoothly
decaying coda envelope which is predicted by the scattering theory,
are often observed. This observed behaviour can be explained by
a non-uniform 3-D distribution of scatterers in the crust. Follow-
ing Nishigami (1991), the structures causing strong scattering can
be identified by analysing the observed coda envelope fluctuations
from a synthesized (or reference) model.

In the present study we will consider the SIS approximation as
the theoretical model for the absolute reference scattering coeffi-
cients. It models the shape of the coda of local earthquakes (Sato
1977) by assuming SIS, random and homogeneous distribution of
scatterers in a constant velocity medium, and spherical radiation
of elastic energy. According to the SIS model, and considering the
anelastic attenuation effect, the coda energy density at a frequency
f , hypocentral distance r and lapse time t in a 3-D space can be
expressed as an integral all over the space in the form (Sato 1977):

Es( f |r, t) =
∫

V

W0( f )g( f )

(4π )2 β r 2
1 r 2

2

e−2Q−1
c π f tδ

[
t − r1 + r2

β

]
dV, (1)

where dV = d3 x ; x is the coordinate vector of the scattering point;
r 1 =|x| is the distance between the hypocentre and the scatterer;
r 2 = |x −r| is the distance between the scatterer and the station;
r = |r|; t is the lapse time measured from the origin time of the
earthquake; β is the average S-wave velocity; W 0(f ) represents the
total energy radiated from the source within a unit frequency band
around f ; and g(f ) is the total scattering coefficient for the frequency
f . In a constant velocity medium, the scatterers responsible for the
generation of coda waves at a distance r and time t are contained in
a spheroidal shell whose foci are located at the source and receiver,
which is expressed by the term (1/β)δ [t − (r 1 + r 2)/β] in eq. (1).
Following Sato (1977) the integration of eq. (1) gives

Es( f |r, t) = W0( f ) g0( f )

4πr 2
K (a) e−2Q−1

c π f t , (2)

for a homogeneous spatial distribution of the scattering coefficient
g0(f ), being K (a) = (1/a) ln [(a + 1)/(a − 1)] for a > 1; a = t/tS;
and tS the S-wave traveltime. For a � 1 K (a) ≈ 2/a2, and therefore,
eq. (2) becomes

Es( f |r, t) ≈ W0( f ) g0( f )

2πβ2t2
e−2Q−1

c π f t , (t > 2tS), (3)

which corresponds to the single scattering model of Aki & Chouet
(1975).

We divide the volume under consideration into a number N of
small blocks of volume δV , as it will be detailed later. Therefore, by
multiplying the right side of eq. (1) by the factor 1/2 for including
the effect of a half-space, then by integrating eq. (1) in the radial
direction over the spheroidal shell (which radius is approximated
by βt/2), which corresponds to the lapse time window tj ± δt/2, we
obtain:

Esa( f |t j )δt ≈ W0( f ) g0( f )

4π2βt
e−2Q−1

c π f t j

N j∑
i=1

δi j

(r1,i r2,i )
2 δV, (4)

where the integral has been approximated by a summation of the
blocks, where each term corresponds to a certain block i. The sub
index a in the energy density indicates the consideration of an aver-
age scattering coefficient g0 over the half-space. δ ij equals 1 when
the ith block lays inside the spheroidal shell which corresponds to the
j time window. Nj is the total number of scatterers in each spheroidal
shell.

The observed coda envelope fluctuations from the theoretical
model due to the non-uniform distribution of scatterers can be ex-
pressed mathematically as spatial perturbations of the average scat-
tering coefficient of the medium due to an individual scatterer in
the form: g = g0 α i (α i ≥ 0). Thus, the integration of eq. (1)
gives

Es( f |t j )δt = W0( f ) g0( f )

4π 2βt
e−2Q−1

c π f t j

N j i∑
i=1

αiδi j

(r1,i r2,i )
2 δV . (5)

For obtaining eqs (4) and (5) we have assumed a constant value
of Qc in the region (see Tripathi & Ugalde 2004 for an estimation of
coda attenuation in the GBA region), thus neglecting the effect of an
spatial variation of Qc on the fluctuations of the coda envelope and
considering that they are caused mainly by the spatial variations of
the scattering coefficient. In order to get a system of equations that
will allow us to estimate the spatial perturbations of the scattering
coefficient we divide eq. (5) by eq. (4),

Es(t j )

Esa(t j )
= 1∑

i
δi j

(r1,i r2,i )2

∑
i

αiδi j

(r1,i r2,i )2
, (6)
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where the left side of eq. (6) is called coda wave energy residual (ej)
and it measures the ratio of the observed energy density in this part
of the coda to the average energy density of the medium.

If we divide the coda of one seismogram into several small time
windows, we will have one equation based on eq. (6) for each time
window. Also for each time window, the scatterers contributing to
the energy density are contained in a spheroidal shell. Thus, eq. (6)
can be rewritten in the following form

w11α1 + · · · + wi1αi + · · · + wN1αN = e1

...

w1 jα1 + · · · + wi jαi + · · · + wN jαN = e j ,

...

w1Mα1 + · · · + wi Mαi + · · · + wN MαN = eM

(7)

where M is the total number of equations (number of seismograms
multiplied by the number of coda time windows considered), N is
the total number of scatterers (number of small blocks into which
the study region is divided) and

wi j = 1∑
i

δi j

(r1,i r2,i )2

δi j

(r1,i r2,i )2
. (8)

2.2 The inversion methods (SIRT and FBP)

To solve systems of equations as large as eq. (7) there exist some
powerful iterative methods (e.g. Kak & Slaney 1988). These meth-
ods were first successfully used in tomographic imaging for medical
applications and have been extended to other scientific fields. The
simplest iterative method is the so-called ART algorithm. For the
use of this method it is necessary to make an arbitrary initial guess
of the solution �α0 = (α0

1, α
0
2, · · · , α0

N ). In our case we simply assign
a unity value to all the α0

j . Then the ART iteration process can be
mathematically described by the following equation:

�α
(i)
j = α

(i)
j − α

(i−1)
j = �α(i−1) · �wi − ei

�wi · �wi
, (9)

where �wi = (wi1, wi2, · · · , wi N ), and the next solution α
(i)
j is

changed from the preceding one α
(i−1)
j by the addition of the quantity

� α
(i)
j . This method was applied by Chen & Long (2000) to solve

a similar problem.
However, ART reconstructions usually suffer from ‘salt and pep-

per’ noise which is caused by the inconsistencies introduced in the
set of equations by the approximations commonly used in the cal-
culation of the matrix parameters. The SIRT (Kak & Slaney 1988)
is another algorithm which eliminates the continual and competing
block update as each equation is considered. Then, by using the
SIRT algorithm, smoother and better-looking reconstructions are
usually obtained at the expense of slower convergence. It is also
known that SIRT algorithms perform better in extreme situations
such as uneven distribution of data, incompleteness, etc., and it is
also possible to easily incorporate constrains as positivity and lim-
ited spatial support. The SIRT algorithm computes the correction
for each block at each iteration by the use of the same equations
as in the ART algorithm, but before making any changes, all the
equations are considered and only at the end of each iteration the
block values are updated. The correction applied to each block is
then the average value of all the computed changes for that block.

In many ART and SIRT implementations the wij’s are simply
replaced by 1’s and 0’s depending on whether the centre of the ith
block is within the jth spheroidal shell. However, the width of the

shell is usually smaller than the width of the block. Thus, in our case,
in order to perform a more accurate inversion, we approximately
evaluate the fraction of volume Vij of each block lying inside the
jth spheroidal shell. In this way we prevent the overestimation or
underestimation that occurs when only 1’s and 0’s are considered.
Thus, we rewrite the coefficients wij as:

wi j = 1∑
i

Vi j

(r1,i r2,i )2

· Vi j

(r1,i r2,i )
2 . (10)

It is also important to use a relaxation (or smoothing) parameter
λ (a factor smaller than unity multiplying the correction factor). If
incorrectly selected, it will either cause premature termination and
incorrect result or, if the number of iterations or λ is too small, it
will result in a reconstruction lacking high-frequency details. By
trial and error we chose λ ∼ 0.01 for about 120 iterations.

There are other faster non-iterative methods which provide solu-
tions to this type of systems of equations. A very convenient and
widely used method is the FBP algorithm (Kak & Slaney 1988). In
this algorithm the scattering coefficients become simply a weighted
average value of the residuals that correspond to a certain block.
This makes FBP much faster than any other iterative method. Com-
putation times are about 100 times smaller than the ones for ART
or SIRT and no relaxation parameter has to be chosen. The corre-
spondence between the scattering coefficients and the residuals are
established following several steps:

(i) For each earthquake k, the traveltime of the signal from the
source to the ith block plus the traveltime from the ith block to each
seismograph l is computed. This time is named Tikl. With this data
we define the corresponding spheroidal surface Sikl. The centre of
the ith block lies on Sikl and the foci correspond to the location of the
hypocentre and the station. Note that each block defines a different
spheroidal surface.

(ii) The corresponding magnitude of the residuals for each earth-
quake k and each station l at the time Tikl is then computed by
simple linear interpolation between two consecutive ej, because
the available discrete data is spaced δt. We call this magnitude
R(Tikl).

(iii) The contribution of each block is proportional to 1/(r1,i r2,i)2.
This factor indicates whether the contribution of a certain block is
more or less important than the contribution of other blocks on the
spheroidal surface Sikl. Then the spatial perturbation of the scattering
coefficient may be written as:

αi =
∑

k

∑
l wikl R(Tikl )∑

k

∑
l wikl

. (11)

Note that each weight in eq. (11) corresponds to a different
spheroidal surface. In order to normalize the contribution of the
weights for each spheroidal surface we consider that a good defini-
tion for the weights would be:

wikl = (1/r1,i )2(1/r2,i )2〈
(1/r1,i )2(1/r2,i )2

〉
Sikl

. (12)

We think this definition is very convenient because an analytical
expression can be written for the average value. In this way the
weights only depend on the location of the ith block, the hypocentre
and the station. This is an important point in order to perform a
faster calculation. The average value can be written as:
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Figure 1. General geological sketch map of southern India. DVP, Deccan
volcanic province; WDC, western Dharwar craton; EDC, eastern Dharwar
craton; SIGT, south Indian granulite terrain; EGGT, eastern Ghat granulite
terrain; CPG, closepet granite; CB, Cuddapah basin and PC, Phanerozoic
sedimentary cover. Dotted line indicates Fermor’s line (boundary between
Dharwar craton and south India granulite terrain). The location of the epi-
centres used for the analysis is also shown (from Tripathi & Ugalde 2004).

〈
(1/r1,i )

2(1/r2,i )
2
〉
Sikl

= 1

Aikl

∫
Sikl

(1/r1,i )
2(1/r2,i )

2 d S, (13)

where Aikl is the area of Sikl. This integral is analogous to the one
solved by Sato (1977). Thus, we may write:∫

Sikl

(1/r1,i )
2(1/r2,i )

2 d S = 4π

rβTikl
· ln

(
βTikl + r

βTikl − r

)
. (14)

By considering the expression for the area of a spheroid we may
then write:

Aikl =
π

2

(
β2T 2

ikl − r 2 + β2T 2
ikl

√
1 − (r/βTikl )2

r/βTikl
arcsin(r/βTikl )

)
.

(15)

And finally we obtain:

wikl = rβTikl

8(r1,i r2,i )2(
β2T 2

ikl − r 2 + β2T 2
ikl

√
1−(r/βTikl )2

r/βTikl
arcsin(r/βTikl )

)

ln
(

βTikl +r
βTikl −r

) .

(16)

In this work, we compare the results of the application of the
two inversion algorithms described. Additionally, some conclusions
about the practical implementations of the methods are reached.

3 G E O L O G I C A L S E T T I N G A N D DATA

The GBA is located in the Indian peninsula, about 90 km north
of Bangalore, on the western flank of the eastern Dharwar craton
which is one of the oldest geological provinces in southern India

(Fig. 1). The region is divided into the western (which is composed
of old gneisses and greenstones with very few granites) and eastern
(which is made of younger rocks with widespread N–S elongate plu-
tons of late Archaeani granites) parts by the 400 km long and 20–30
km wide, north–south trending granitic intrusion named Closepet
batholith (Moyen et al. 2003). The area around the array is rela-
tively flat, with a few hill ranges towards the east and the south.
Thus, the topographic influence on scattering would be very small.
A crustal model consisting of a 16 km thick top granitic layer over
a second layer 19 km thick above the mantle (i.e. with the Moho at
35 km depth) was proposed by Arora (1971) and observed S-wave
velocities were 3.46, 3.96 and 4.61 km s−1, respectively.

Waveform data used were selected from 80 earthquakes with
epicentral distances up to 120 km which were recorded by the
GBA in the period 1992 January to 1995 December. GBA is an L-
shaped seismic array and each arm contains 10 short-period (T 0 =
1 s) vertical-component seismometers spaced at intervals of about
2.5 km. The recorded signals are digitized at a sampling interval
of 0.05 s. All the events are shallow (depths less than 10 km) and
local magnitudes range between 0.3 and 3.7. Attending to the qual-
ity of data and after a careful visual inspection, only 636 vertical-
component, high-quality waveforms were finally processed.

4 DATA A N A LY S I S A N D R E S U LT S

One example of the analysis procedure (Nishigami 1991) is shown
in Fig. 2. First, each seismogram was bandpass filtered over the

44 48 52 56 60 64 68
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ln [t 2Aobs(f |r,t )]

ln[e(t )]

(a)

(b)

(c)

Figure 2. Example of the processing steps for obtaining the coda energy
residuals: (a) bandpass filtered coda waveform of an earthquake at an epi-
central distance of 90.6 km; (b) logarithm of the running mean-squared am-
plitudes corrected for geometrical spreading effect. The discontinuous line
is the best linear fitting function to the logarithmic trace and (c) logarithm
of the coda energy residuals averaged in a time window of 0.5 s.
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Figure 3. Hit counts or number of coda residuals contributed by each block. It measures the number of times each block is sampled by the scattering shells of
observed coda data. The darker areas are the zones lesser sampled by the spherical shells.
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Figure 4. Spatial distribution of relative scattering coefficients for different depths and for the two inversion methods used: (a) results for the frequency band
1–2 Hz; (b) 2–4 Hz and (c) 4–10 Hz. The lightest zones indicate the strongest perturbations from an average scattering coefficient.
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Figure 4. (Continued.)
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Figure 5. Vertical cross-section of relative scattering coefficients at the parallel 13.6◦, which corresponds to the latitude of the array crosspoint.

frequency bands 1–2 (1.5 ± 0.5) Hz, 2–4 (3 ± 1) Hz and 4–10 (7 ±
3) Hz. Then, the rms amplitudes Aobs(f |r, t) were calculated by using
a 0.25 s spaced moving time window of length t ± 2 s, t ± 1 s, and
t ± 0.5 s for the first, second and third frequency band, respectively.
The time interval for the analysis started at 1.5 times the S-wave
traveltimes (in order to increase the resolution near the source re-
gion) and had a maximum length of 20 s (to minimize the effects of
multiple scattering). The rms amplitudes for a noise window of 10
s before the P-wave arrival were also computed and only the ampli-
tudes greater than two times the signal to noise ratio were kept. The
amplitudes were then corrected for geometrical spreading by mul-
tiplying by t2 which is valid for body waves in a uniform medium.
Then, the average decay curve was estimated for each seismogram
by means of a least-squares regression of ln[t2 Aobs( f |r , t)] versus
t and only the estimates with a correlation coefficient greater than
0.60 were kept. The observed coda residuals e(t) were then calcu-
lated by taking the ratio of the corrected observed amplitudes to
the estimated exponential decay curve. Finally the residuals were
averaged in time windows of δt = 0.5 s to get ej at discrete lapse
times tj. The decrease of δt increases the spatial resolution, but also
the size of the inversion problem. In this case, the system (7) has a
number of equations of ∼2700 for the frequency bands centred at

1.5 and 7 Hz, and ∼5200 equations for the 3 Hz centre frequency.
The time window for the averaging must also satisfy the condition
δt ≤ 2(δV )1/3/β, where δV is the volume of one small block into
which the study area is divided and β = 3.65 km s−1 in this re-
gion (Arora 1971; Krishna & Ramesh 2000). This condition assures
that the width of each spheroidal shell is smaller than the size of a
block.

We selected a 155 × 155 km in horizontal and 80 km in depth
study region attending to the stations and hypocentres distribution
and it was divided into N = 50 × 50 × 25 blocks. Then, the ob-
servational system of eq. (7) was created by assuming the layered
velocity structure by Arora (1971) and it was solved using the SIRT
and FBP algorithms.

Before discussing the results, we examine the reliability of the
solution. Fig. 3 shows the hit counts, or number of coda residuals
contributed by each block, that shows which grid zones may be
affected by sampling insufficiency for the grid defined. It can be
observed that the entire region is sampled by the ellipses, however,
the hit counts are much less in an area close around the array and they
increase both in horizontal and depth directions up to the considered
depth of 80 km. This happens because the stations are concentrated
in a small area, which makes all the blocks which are close to the

C© 2006 The Authors, GJI, 166, 782–794

Journal compilation C© 2006 RAS



Spatial distribution of scatterers in southern India 791

76.60 77.30 78.00

Longitude

12.90

13.60

14.30

L
at

it
u

d
e

76.60 77.30 78.00

Longitude

-80.00

-60.00

-40.00

-20.00

0.00

D
ep

th

Perturbation of Scattering Coefficient

0.00 0.07 0.14 0.21 0.29 0.36 0.43 0.50 0.57 0.64 0.71 0.79 0.86 0.93 1.00

Figure 6. Spatial distribution of relative scattering coefficients for a synthetic test consisting of one spheroidal structure with two horizontal semi-axes of 13
km and the vertical semi-axis of 9.3 km. It was located at different distances from the array centre point, which is shown by a solid triangle: (a) to the west; (b)
below and (c) to the east. The pattern recovered at a depth of 0 km is plotted at the top of the figure. The vertical cross-section along the plane defined by the
latitude of the array centre point is also shown.

array to correspond to short lapse times, and they are few because
we omitted the earliest portion of the S-wave coda by adopting 1.5tS

as start time for the analysis.
On the other hand, we tested the resolution of the inversion meth-

ods by synthesizing the coda energy residuals from the observational
equation using a given test distribution of scattering coefficients and
the same distribution of stations and events used in the analysis. We
generated vertical structures with positive perturbations of the scat-
tering coefficient with horizontal dimensions equal to one block and
depths up to 80 km embedded in a non-perturbed medium. Then the

synthesized residuals were inverted. Results show that although the
vertical structures are seen almost up to the maximum depth con-
sidered of 80 km, they are well reproduced (more than 50 per cent
of the perturbation value is returned) only up to the seventh block
(22.4 km).

The resulting distribution of relative scattering coefficients
α − 1 = (g − g0)/g0 in the study region for the three analysed
frequency bands and for different depths is plotted in Fig. 4. The
lightest tones indicate scattering coefficients larger than the average
in this region.
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Figure 6. (Continued.)

5 D I S C U S S I O N

It can be observed that we obtain practically the same distribution
of relative scattering coefficients regardless of applying the SIRT
or FBP inversion algorithms. Whereas the SIRT algorithm provides
slightly lower values of the relative scattering coefficients, the FBP
method provides more contrast. Thus, we would recommend the use
of the FBP method, which requires much lesser (about 100 times)
computation time.

On the other hand, Fig. 4 shows that more than the 90 per cent of
the analysed region reveals a spatial perturbation of the scattering
coefficient between ±25 per cent. This means that the crust around
GBA presents a remarkably uniform distribution of scattering

coefficients. For low frequencies, this uniformity is broken by the
presence of a strong scattering area which is recognized from the
surface up to a depth of 24 km just below the array. This structure is
not observed at high frequencies. In fact, each analysed frequency
band is giving us information about inhomogeneous structures with
sizes comparable to the seismic wavelengths (∼1.8 to ∼3.6 km for
1–2 Hz, ∼900 m to ∼1.8 km for 2–4 Hz, and ∼360 m to ∼900 m for
4–10 Hz in this case). Fig. 5 shows a cross-section of relative scat-
tering coefficients shown in Fig. 4 projected onto the vertical plane
defined by the parallel of the array centre point. It can be observed
that the strongest scatterers are located on the western part of GBA.
However, Figs 4 and 5 show that the heterogeneity follows an ellip-
soidal pattern. This may happen because this area is poorly sampled
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Figure 6. (Continued.)

by the ellipses as previously discussed in Fig. 3, however, the be-
haviour is only observed for the lowest frequency band analysed. In
fact, we detected high values of the residuals at low frequencies and
short lapse times. In order to establish the validity of the results of
this study we tested the inversion method by means of a synthetic
test. Because the most notable geological feature in the considered
region is the 400 km long and 20–30 km wide, north–south trending
Closepet granitic intrusion, we simulated the existence of a single
spheroidal structure with positive perturbations of the scattering co-
efficient at different locations in a non-perturbed medium. Results
of the inversion of the synthesized residuals are shown in Fig. 6. It
can be observed that the patterns of the test are well reproduced.
We may then conclude that the scattering region observed near the

array centre point (Fig. 4) is neither a ghost image nor a mathemat-
ical artefact. Thus we may consider that the inversion method may
reproduce up to a certain extent the observed data.

With respect to the uniform distribution of scattering coefficients,
our results are in accordance with previous studies performed in
the region. In an early work in this region using statistical analy-
sis of observed teleseismic traveltime residuals, Berteussen et al.
(1977) remarked that the area on which GBA is sited presents
exceptionally homogeneous structures, apart from the general ex-
isting velocity perturbations of the order of a few percent. This
conclusion was partly supported by Mohan & Rai (1992), who
also detected the presence of a prominent scatterer in the deep
crustal and uppermost mantle level (30–55 km) in this region from a
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semblance technique analysis. The scattering region coincided with
the Closepet granitic intrusion in the region. Krishna & Ramesh
(2000) performed a frequency–wavenumber (f–k) spectral analysis
of P-coda waveforms to mine tremors and explosions recorded at
GBA array. They found a near-on azimuth dominant energy peak
with apparent velocity appropriate to the upper crustal depths and
they interpreted the result by the presence of a scattering waveguide
at upper crustal depths (5–15 km) which might be also related to the
granitic batholith. In our case, the zone of strong relative scattering
coefficients at low frequency to the west of the GBA array cross-
point also coincides with the so-called Closepet batholith, which is
a granitic intrusion that acts as the major geological boundary in the
region and it is believed to be a Precambrian suture zone between
the eastern and western Dharwar craton.

6 C O N C L U S I O N S

We estimated the 3-D distribution of relative scattering coefficients
in the crust in southern India by means of an S-wave coda envelope
inversion technique applied to local recordings by the GBA. Two
different inversion algorithms were used for the first time in this
type of seismological research: the SIRT and the FBP method. The
results allowed us to reach the following conclusions:

(1) The spatial distribution of the relative scattering coefficients
obtained was almost independent of the inversion method used.

(2) The FBP method is very convenient and appropriate for solv-
ing these kinds of problems because it requires about 100 times less
computation time than the SIRT algorithm to invert the data.

(3) The crust of the analysed region around GBA showed a re-
markably uniform distribution of scatterers at more than the 90 per
cent of the area, which is in accordance with the conclusions of
previous studies in the region using statistical analysis of observed
teleseismic traveltime residuals.

(4) An inhomogeneous structure with size comparable to a wave-
length of ∼1.8 to ∼3.6 km for 1.5 Hz was detected to the west of
GBA from the surface up to a depth of about 24 km just below the
array and it coincides with the Closepet granitic intrusion which
is the major geological boundary between the eastern and western
Dharwar craton.
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[1] A three-dimensional spatial distribution of relative
scattering coefficients is estimated for the Galeras volcano,
Colombia, by an inversion of the coda wave envelopes from
1564 high quality seismic recordings at 31 stations of the
Galeras seismograph network. The inversion reveals a
highly non-uniform distribution of relative scattering
coefficients in the region for the two analyzed frequency
bands (4-8 and 8-12 Hz). Strong scatterers show frequency
dependence, which is interpreted in terms of the scale of the
heterogeneities producing scattering. Two zones of strong
scattering are detected: the shallower one is located at a
depth from 4 km to 8 km under the summit whereas the
deeper one is imaged at a depth of �37 km from the Earth’s
surface. Both zones may be associated with the magmatic
plumbing system beneath Galeras volcano. The second
strong scattering zone may be related to a deeper magma
reservoir that feeds the system. Citation: Carcolé, E.,

A. Ugalde, and C. A. Vargas (2006), Three-dimensional spatial

distribution of scatterers in Galeras volcano, Colombia, Geophys.

Res. Lett., 33, L08307, doi:10.1029/2006GL025751.

1. Introduction

[2] Galeras volcano (1.23�N, 77.36�W; summit elevation
4,276 m) is a 4,500 years old active cone of a more than
1 Ma old volcanic complex which is located in the Central
Cordillera of the southwestern Colombian Andes (Figure 1).
It is historically the most active volcano in Colombia and it
has been re-activated frequently in historic times [Banks et
al., 1997]. It is located only 9 km west of the city of San
Juan de Pasto which has a population of more than 300,000
and another 100,000 people live around the volcano.
Although it has a short-term history of relatively small-to-
moderate scale eruptions, the volcanic complex has pro-
duced major and hazardous eruptions [Calvache et al.,
1997] thus constituting a potential risk to the human
settlements in this region. Galeras was designated a Decade
Volcano in 1991, which identified it as a target for intensive
and interdisciplinary study during the United Nations’
International Decade for Natural Disaster Reduction.
[3] The re-activation of Galeras volcano was recognized

in 1988 after forty years of repose [Williams et al., 1990]
and the eruptive period lasted until 1995. Since then, the
volcano has been in a relatively calm stage with some ash
and gas emission episodes and low-level eruptive activity. A

crater located to the east of the main one was re-activated in
2002 after more than 10 years of inactivity. A new eruptive
episode consisting of three explosive events began in 2004
and it continues active at the time of this writing.
[4] Seismicity in the region since 1988 has been charac-

terized by long period events, volcano-tectonic earthquakes
and tremor episodes. A type of unusual shallow-source, low
frequency seismic signals called ‘‘tornillos’’ which are
related to magmatic activity have also been recorded during
different stages of volcanic activity at Galeras [Gómez and
Torres, 1997]. The level of seismic activity has fluctuated,
alternating periods of low-level seismicity with episodes of
increased seismic activity in terms of the number and/or
magnitude of the events. Some shallow (up to 8 km)
volcano-tectonic earthquakes have reached local magni-
tudes up to 4.7.
[5] With the aim of enlarging the knowledge of the

internal structure of the volcano as well as to serve for its
seismic hazard assessment, the present study is a different
complementary contribution to the interdisciplinary re-
search (geological, geophysical and geochemical) being
conducted in the region since the re-activation of Galeras
volcano. We will focus on the imaging of small-scale
heterogeneities by estimating the three-dimensional spatial
distribution of relative scattering coefficients from shallow
earthquakes that occurred under the volcano region.

2. Data and Method

[6] Data used in this study is a selection of 1564 high
quality records of the S-wave coda from shallow earth-
quakes (depths less than 10 km from the Earth’s surface)
with local magnitudes less than 2.0 which occurred in the
region from 1989 to 2002. The 31 short-period (T0 = 1 s),
vertical component recording stations used were deployed
at different stages of the Galeras seismic network operation
and they were located at distances less than 10 km from the
active crater (Figure 1).
[7] In order to estimate the inhomogeneous spatial distri-

bution of relative scattering coefficients in the crust we
followed the method proposed by Nishigami [1991] by using
an inversion method of coda waveforms from local earth-
quakes. This method assumes that the fluctuation of the
decay curve of the observed coda envelope is caused by a
non-uniform distribution of scatterers. The decay curve is
then compared with a reference curve, which is estimated by
assuming single isotropic scattering and spherical radiation
from the source. This method with some adaptations has
proved to be an effective approach to investigate the real
heterogeneous structure in the crust of several regions in the
world [Nishigami, 1991, 1997, 2000; Chen and Long, 2000;
Asano and Hasegawa, 2004; Ugalde et al., 2006].
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[8] According to Nishigami [1991] the observational
system of equations relating the spatial distribution of
relative scattering strength to the observed coda energy
residuals under the assumption of single isotropic scattering
and spherical radiation of a seismic source can be written as:

w11a1 þ � � � þ wi1ai þ � � � þ wN1aN ¼ e1

..

.

w1ja1 þ � � � þ wijai þ � � � þ wNjaN ¼ ej

..

.

w1Ma1 þ � � � þ wiMai þ � � � þ wNMaN ¼ eM

ð1Þ

[9] This system of equations is obtained by dividing the
coda of each seismogram into several small time windows,
thus having one equation based on (1) for each time
window. Also for each time window, the scatterers contrib-
uting to the energy density are contained in a spheroidal
shell. Therefore, M is the total number of equations (number
of seismograms multiplied by the number of coda time
windows considered), and N is the total number of scatterers
(number of small blocks into which the study region is
divided). The right side of equation (1) is called coda wave
energy residual (ej) which measures the ratio of the ob-
served energy density in this part of the coda to the average
energy density of the medium [Sato, 1977], and the
unknowns ai � 0 are the spatial perturbations of the average
scattering coefficient of the medium due to an individual
scatterer. The weights wij are defined as:

wij ¼
1

P

i

1

r1;ir2;ið Þ2
1

r1;ir2;i
� �2 ð2Þ

where r1,i and r2,i are the distances between the hypocenter
and the scatterer i and the scatterer i and the station,
respectively.
[10] To solve systems of equations as large as (1) there

are some powerful iterative and non-iterative methods [e.g.,
Kak and Slaney, 1988] that were first successfully used in
tomographic imaging for medical applications and that have
been extended to other scientific fields. A very convenient
non-iterative method is the Filtered Back-Projection (FBP)
algorithm which has proved to be about 100 times faster
than the Algebraic Reconstruction Technique (ART) or
Simultaneous Iterative Reconstruction Technique (SIRT)
iterative methods [Ugalde et al., 2006].

3. Analysis and Results

[11] Because each analyzed frequency band is giving us
information about inhomogeneous structures with sizes
comparable to the seismic wavelengths, and given that the
signal energy contents of the available data decays abruptly
for frequencies f above 12 Hz, we decided to calculate the
coda wave energy residuals [Nishigami, 1991; Ugalde et al.,
2006] for the frequency bands 4–8 (6 ± 2) Hz and 8–12
(10 ± 2) Hz, thus allowing us to image structures of sizes
comparable to wavelengths of �400 to �800 m for 4–8 Hz,
and �300 m to �400 m for 8–12 Hz. These sizes are
derived by considering an average S-wave velocity of b =
3.3 km/s in the study region. From the bandpass-filtered
seismograms, we calculated the rms amplitudes Aobs( f jr, t)
for each hypocentral distance r by using a 0.25 s spaced
moving time window of length t ± 1 s, and t ± 0.5 s for the
6 Hz and 10 Hz center frequencies, respectively. The time
interval for the analysis started at 1.5 times the S-wave
travel times (in order to increase the resolution near the
source region) and had a maximum length of 20 s (to
minimize the effects of multiple scattering). We also com-
puted the rms amplitudes for a noise window of 10 s before
the P-wave arrival and only the amplitudes greater than two
times the signal to noise ratio were kept. Then, the average
decay curve was estimated for each seismogram by means
of a linear regression of ln[t2Aobs( f jr, t)] vs. t, where the
term t2 is a geometrical spreading correction which is valid
for body waves in a uniform medium. We only kept the
estimates with a correlation coefficient (of the linear regres-
sion) greater than 0.60. The observed coda energy residuals
e(t) were then calculated by taking the ratio of the corrected
observed amplitudes to the estimated exponential decay
curve. Finally the residuals were averaged in time windows
of dt = 0.25 s to get ej at discrete lapse times tj. The decrease
of dt increases the spatial resolution, but also the size of the
inversion problem.
[12] A 20 km 	 20 km in horizontal and 50 km in depth

study region was selected taking into account the distribu-
tion of stations and hypocenters. The study region was
divided into N = 50 	 50 	 50 blocks, the volume of which
satisfies the condition dt 
 2(dV)1/3/b. Then, the observa-
tional system of equations (1) was created by assuming the
layered velocity structure shown in Table 1 and it was
solved using the FBP algorithm [Ugalde et al., 2006].
[13] To check for sampling insufficiencies, we computed

the hit counts, or number of coda residuals contributed by
each block. We found that the entire region is sampled by

Figure 1. Map of the Galeras volcanic complex region
showing the location of the epicenters and seismic stations
used: (a) horizontal projection at the surface where the study
area is indicated by a dotted square; and (b) a 3-D
representation of the stations and hypocenters location.
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the ellipses although the number of hit counts is smaller at
the deepest levels and also inside a shallow area to the
north-east of the volcano summit.
[14] The resulting distribution of relative scattering coef-

ficients a � 1 in the study region for the analyzed frequency
bands and for different depths up to 10 km from the summit
is plotted in Figure 2. The colour scale indicates the
perturbation of scattering coefficients from the average in
this region, being the largest values �3.0 and the minimum
�0.5. The stability of the solution was checked by decreas-
ing dt and increasing the number of blocks. The resulting
image showed the same distribution of strong and low
scattering areas with slightly different values of the relative
scattering coefficients.

4. Discussion and Conclusions

[15] Figure 2 shows that the region of ±10 km in
horizontal and 10 km in depth centred at the Galeras

volcano summit presents a remarkable inhomogeneous
distribution of relative scattering coefficients. More than
the 83% and 50% of the analyzed region for low and high
frequencies, respectively, reveal a spatial perturbation of the
scattering coefficient greater than +50%. For low frequen-
cies, a strong scattering donut-shaped area with relative
scattering coefficients between 0.96 and 3.0 is found around
the volcano at all depths. The volume showing the strongest
relative scattering coefficients (a � 1 � 2.0–3.0) is located
to the northeast of the volcano at depths between �0.5 km
and �4.5 Km. At high frequencies, the strong scattering
zone occurs slightly to the north of the axis of the volcano at
the same depths. Also we may notice that the scattering
strength is similar but slightly lower for the lower frequency
band. Then, we may conclude that, at shallow depths, there
is a single complex structure located at the north of the
volcano that shows a frequency dependent behaviour. The
relative scattering coefficients at high frequencies are stron-
ger than those at low frequencies in a volume near the axis
of the volcano, which means that the area contains small-
size heterogeneities such as small fractures (comparable to a
wavelength of �300 m to �400 m for a centre frequency of
10 Hz) which contribute more scattered energy than those
with larger sizes. On the contrary, heterogeneities with sizes
comparable to a wavelength of �400 to �800 m for a centre
frequency of 6 Hz contribute more to the scattering energy
at the north-east of the summit.
[16] Figure 3 shows a vertical cross section of the region

along the east-west and north-south directions centred at the

Figure 2. Horizontal sections of the study area showing
the distribution of the relative scattering strength (a-1) at
different depths from 4 km to �4.5 km. The solid triangle
indicates the location of the Galeras volcano summit. The
topographic contour lines at 4000 m and 3500 m levels are
also plotted.

Table 1. Layered Velocity Structure Model Considereda

Depth (km) S-Wave Velocity (km/s)

4 2.0
2 2.1
0 2.2

�4 3.4
�22 3.8
�40 4.5

aD. Gómez (Vulcanological and Seismological Pasto Observatory,
personal communication, 2005).

Figure 3. Vertical cross section of the study region along
the two planes defined by the summit coordinates, which is
indicated by the solid triangle (latitude 1.23� and longitude
�77.36�). The color scale indicates the perturbation of the
scattering coefficient a-1 for the (a and b) 4–8 Hz and
(c and d) 8–12 Hz frequency bands.
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volcano which shows the scattering perturbation at higher
depths. A second strong scattering volume at depths be-
tween �29 km and �36 km is clearly observed at high
frequencies and can be noticed at low frequencies. Unfor-
tunately, in this case it is more difficult to establish the
geometry of the scattering region. The ellipsoidal pattern
imaged results from both a poor sampling and the geometry
of the ellipses at these deeper levels, which are almost
parallel. This makes it possible to establish only the depth
and height of the region. A frequency dependence of the
strength of the scattering coefficient is again observed thus
indicating that small-scale heterogeneities contribute more
scattering energy at these deeper levels.
[17] The existence of both structures is in close agree-

ment with the current magmatic plumbing system model
beneath Galeras volcano. This model is based on petrologic
and seismic data and it proposes a shallow conduit system
with a distinct reservoir at a depth of 4–5 km from the
summit which is periodically fed from a deeper magma
reservoir which is located from km’s to tens of km’s depth
[Calvache, 1990; Zapata et al., 1997]. In order to establish
the validity of the results of this study and to help their
geological interpretation, we tested the inversion method by
means of a synthetic test. We simulated the presence of two
magmatic chambers located at the north of the volcano at
depths of �2 km and �33 km by two spherical structures
with positive perturbations of the scattering coefficient
embedded in a non perturbed medium. Thus, we assigned
ai � 1 = 1 to the blocks located inside the spherical
structures and ai � 1 = 0 to the blocks located outside.
Then, we computed the corresponding coda energy resid-
uals from the observational equation (1) using the same
distribution of stations and events used in the analysis.
Figure 4 shows the inversion of the synthesized residuals.

It can be observed that both the pattern and the perturbation
value of the scattering coefficient were well resolved in the
considered region for shallow depths. A comparison of
Figures 3 and 4 suggests a reasonable agreement between
synthetic and experimental results, thus supporting the
identification of the scattering structures imaged with the
magmatic chambers of the geological model.
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Figure 4. Vertical cross section showing the results of the
inversion analysis for a synthetic test consisting of two
spherical structures buried at depths of �2 km and �33 km.
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