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Abstract 

The low resolution and phase quantization invol'.,=d in the codification of a Fresnel lens in a spatial light moddator 
produce non-negligible effects in the performance quahty. ~: this paper we study the effects due to both limitations in such 
devices. 
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1. Introduction 

The Fresnel lens is one of the simplest and most 
useful holograms which can be encoded in a spatial 
light modulator (SLM). The SLM permits changing 
holograms at frame speed. This implies the possibil- 
ity of using Fresnel lenses encoded in SLM as 
variable focal length lenses in optical setups [1,2]. 
Also, a wide variety of applications of holograms 
including low resolution Fresnel encoded lenses 
(LRFELs) have been studied [3-7]. Mostly, SLMs 
are low resolution devices. Then, for a Fresnel lens, 
this involves the low resolution encoding of a 
quadratic phase. This fact implies non-negligible ef- 
fects in the Fresnel lens performance quality. Re- 
cently, Carcol~ et al. have developed a theory to 
describe the performance of the LRFEL [8]. This 
theory is based on a mathematical model of the 
LRFEL that makes it possible to use the diffraction 
theory in the Fresnel approximation [9]. Using this 
theory the amplitude distribution in the focal pl,'me is 

calculated for all focal regions. The resulting expres- 
sions are functions of several adimensional parame- 
ters that take into account the characteristics of the 
SLM, the wavelength and the focal length encoded. 
By using this theory it is also possible to derive 
expressions for the diffraction efficiency correspond. 
ing to each focal region [10]. A way to optimize 
short focal length lenses has also been developed 
[l l] .  

Another basic limitation of the SLM is that only a 
certain number of phase levels can be encoded. The 
purpose of this paper is double: first, to complete the 
description of low resolution effects dealt with in 
Ref. [8] and second, to use the new results to de- 
scribe the effects of the phase quantization of  the 
LRFEL. In Ref. [12] a general description of phase 
quantization effects on phase functions is developed 
and we are going to use it. 

The theoretical background of this paper is con- 
tained in Refs. [8,12]; then, in Section 2, the main 
results of these two papers are explained in relation 
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to our development. In Section 3 we complete the 
description of  low resolution effects on Fresnel lenses 
in order to enable the development in Section 4. In 
Section 4 we describe the effects of phase quantiza- 
tion on the LRFEL using the results of Section 3. In 
Section 5 the particular case of binary Fresnel lenses 
is considered and the effect of phase quantiz~tion 
and low resolution on the shape of the lens itself are 
shown. In Section 6 the conclusions of the paper are 
presented. 

2. T h e o ~ i c a l  background 

The purpose of this section is to introduce the 
basic notation and results that we shall use thn~ugh- 
out the paper and are taken from Ref. [8] (in Section 
2.1) and Ref. [12] (Section 2.2). 

2.1. Sampling effects encoding Fresnel lenses 

When a Fresnei lens with focal length f is sam- 
pied with an infinite matrix of Dirac delta functions 
with period Ax and Ay  in the x and y direction 
respectively, new fi~calizations appear in the focal 
plane at the coordinates (kX, /Y) where ¢c, l are 
integer numbers and X and Y are defined by 

Af  Af  
x=~-~x, r=  A--~" (i) 

Then an LRFEL seems to be a matrix of lenses. The 
apparent size of each lens is XY. The number of 
lenses that lies inside a rectangular device with 
dimensions L X, Ly is given by 

Lx L V w.=~, wy=¥. (2) 
In Fig. 1 we can see a single LRFEL for W x= 
W~. = 7. 

Another interesting property is that, keeping the 
sampling matrix in the same positior,, sampling a 
Fresnel lens centered at the (0, O) coordinate is com- 
pletely equivalent to sampling another Fresnel lens 
centered at the (kX, IY) coordinate (k, I being arbi- 
trary integer numbers) with a phase shift given by 

~,k.,, = - ~ [  k2R~ + 12R,] 

- 2 = [ k ( ' P ( N )  - O ( k R , ) )  

+ l ( ½ P ( M )  - o ( I R , ) ) ] .  (3) 

where 

X Y 
R,  = "~x " R y = -~y , (4) 

and N and M are the number of delta functions in 
the x and y direction that lie inside a rectangle with 
dimensions L X, L~. and P (x )  is a function that was 
used in order to take into account whether the lens is 
centered at a delta function (then x is an odd natural 
number and P ( x ) =  O) or between two delta func- 
tions (then x is an even natural number and P = I); 
D(x)  means the fractional part of x. Note that, in the 
general case, we can consider the center of the lens 
to be the coordinate ( a A x / 2 ,  b a y / 2 )  where a and 
b are arbitrary real numbers. This is equivalent to 
considering P( N ) = a and P( M ) = b. 

Finally, an important conclusion of Ref. [8] is that 
the complex amplitude originated by the propagation 
of any distribution encoded in a low resolution de- 
vice (for instance a Fresnel lens) can be calculated: 
first we calculate the propagation supposing that the 
pixels are perfect points (mathematically, delta Dirac 
functions), and finally we convolve the amplitude 
obtained in this way with the function that defines 
the transmittance of a single pixel. So, through the 
paper, the functions representing a transmittance 
function will not be considered to be convoived by 
the transmittance function of a single pixel and will 
be written as a linear combination of delta functions. 

2.2. Phase quantization effects 

In Ref. [12] it is shown that, when a phase 
function exp(itp) is quantized in L levels, the new 
resulting function exp(i~p L) can be written as 

exp(i~PL)= ~ s inc ( l /L  + m )  
m f f i  - : e  

X exp[i( Lm + I) ¢ ] ,  (5) 

where m takes integer values. If ~p corresponds to 
the phase of a Fresnel lens with focal length f ,  i.e. 

g z ~__ _T~(x +y2) (6) 
( K - -  2 ~r/A where A is the wavelength) then, from 
Eq. (5), the Fresnel lens becomes the sum of Fresnei 
lenses with different focal lengths (each one identi- 
fied by a different value of m) given by 

f,~ = f / ( L m  + !) .  (7) 
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For L = 2 we get the known result for Fresnel zone 
plates: 

f .  --f/(2,,~ + I). (8) 

3. Effects of  low resolution on a Fresnel lens 

In order to sample a Fresnel lens for encoding in a 
low resolution device we use the following function: 

comb( x, y) 

- 

y - [ m + ½ P ( M ) ] A y } ,  (9) 

where a(x ,  y) is the two dimensional delta Dirac 

function, n and m are integers, and we multiply it by 
the lens transmission, 

z / (x ,  y ) = e x p  - . ~ - ~ ( x  + y 2 )  , (10) 

resulting in 

z/.a(x, y ) =  z / (x ,  y)comb(x,  y) ,  ( !1)  

where z/.d(x, y) is the sampled Fresnel lens. 
comb(x, y) is a periodic function, so it can be 
expanded into a two-dimensional Fourier series: 

Zf.d( X, y) 
! 

-- A x  A yZf(  X, Y) 

~ - ~ l ~ - ~  [ ~Ax 

× e x p [ - i l r ( k e ( N )  + / P ( M ) ) ] ,  (12) 

Fig. I. LRFEL corresponding to W x = Wy = 7. 
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where k and I are integer numbers. Using Eq. (12) in 
Eq. ( l l )  it is easy to get 

zf.~(x, y) 

! 7-, K 2 

. k  2 

xexp[-i~(kP(N) +te(m))]. (13) 

This equality can be rewritten in the following way: 

Zf, a( x, y) = Ax Ay t . . . . . .  

× ( x - kX, y - IY ) exp(i$~,.o ), 

(14) 
where 

~,., ,  ~- ~[k:R,  + l~R~] - ~[kt ' (N)  + U ' ( m ] .  

(15) 

Eq. (14) means that a sampled Fresnel lens can also 
be understood as an infinite sum of shifted Fresnel 
lenses, each one idenfifieti by the pair of numbers 
(k, l). The shifts ate multiples of the (X, Y) quanti- 
ties, and each lens has a phase shift given i~y ~tk.~ in 
Eq. (15). Note that when we are encoding a real 
LRFEL, far example the one shown in Fig. l, a pupil 
~ncfion always affects all the new shifted Fresnel 
lenses. Note also that the actual size of this pupil for 
each (k, 1) lens is not XY (the apparent size of each 
shifted Fresnel lens in Fig. 1) but L~Ly. 

Then, note that if we encode a matrix of 49 
identical Fresnel lenses using copies of a Fresnel 
lens of size XY, we will obtain something that will 
look like Fig. 1. But the point spread function that 
will be obtained in the focal plane will be much 
wider because the actual size of the pupil function of 
each lens of the matrix is XY. Fig. l comes from the 
sampling of a single Fresnel lens, and is actually an 
infinite set of multiplexed Fresnel lenses, and the 
size of each lens is L~ = 7X and Ly ~- 7Y while the 
point spread function will be narrower. 

From Eq. (14) it is easy to get 

zf.~( x, y) ~ Zf.d( X-- kX, y -  IY ) exp(i~b~.,), 
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where k and ! are arbitrary integer numbers. This 
means that it is the same to encode a sampled 
Fresnel lens centered at the (0, 0) coordinate as it is 
to encode another Fresnel lens centered at the 
(kX, IY) coordinate with a phase shift ~k.t. This was 
first derived in Ref. [8] in a rather cumbersome way 
and commented in Section 2. Then we expect that 
the phase ~ . l  given by Eqs. (15) and (3) are the 
same phase. To make Eqs. (3) and (15) equal, it is 
necessary to add to Eq. (3) the following number: 
2~[kE(kR x) + 1E(IRy)], where E(x) means the inte- 
ger part of x, and to take into account that D(x) + 
E(x)=x .  Note that the number to add is just a 
multiple of 2-~ so we are not changing the actual 
value of the phase. Eqs. (14) and (15) are the final 
result that completes our description of the low 
resolution encoding effects of a Fresnel lens. This 
result enables us to develop the following section. 

4. Phase quantization effects on the LRFEL 

In this section, we shall analyze the effects of 
encoding an LRFEL in a device that only permits a 
certain number of phase levels to be encoded. For 
this purpose we use the trivial fact that first sampling 
and then quantizing the phase is completely equiva- 
lent to first quantizing the phase and then sampling 
it. For a quantized Fresnel lens with focal length f ,  
zf.t(x, y) can be written, using Eqs. (5) and (6), as 

Zf.L~ ~, s i nc ( l /L+m)  Zf~(x, y).  (16) 
ra= - ~ 

This means that a phase quantized Fresnel lens with 
focal length f is equivalent to the sum of infinite 
Fresnel lenses with focal length fm given in Eq. (7). 
If we sample it, i.e. multiply it by the comb function 
as in Eqs. (! I) and 02) ,  note that this is the same as 
sampling each z f (x ,  y) in Eq. (16), so a phase 
quantized LRFEL Zl.d.L(X, y) Can be written as 

Zl.d.L(X, y) = ~ s inc ( l /L+m)  zf~.d(x, y).  

(17) 
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Now, using Eqs. (14) and (15), we get 
! :* 

Zf.d.L(X, y) ~- A---~y m ~  s ine( I lL+m) 

k = - - ~  I= - -~  

× exp(i~btk.t.ml), (18) 

with 

*,.,.m,= *,(l,~R°.~ + l~R°.~) S. Binary LRn~,  
- , r (  kP( N) + IP( M) ) (19) 

and 

Afm Afm 
x.fx- ;, r.=XT, 

X,~ Ym 
R..x= S-~, R,.,  = T ; .  (2O) 

The meaning of Fxls. (18), (19) and (20) is the 
following. Each z~(x, y) coming from phase quan- 
tization becomes, due to the sampling, the sum of 
infinite new Fresnel lenses, identified by the (k, l) 
numbers, and with the same focal length fro. Each 
(k, l) lens is shifted by a distance (kX m, IY,,,) from 
the origin and has a phase shift given by ~bt~.t.= ). 
This implies that in each focal plane defined by fm 
we get an infinite matrix of focalizations with posi- 
tions given by (kX=, IY m) with k, l arbitrary integer 

numbers and with a phase shift given by ~(k,l,m)" The 
amplitude of all focalizations in an fm plane is 
affected by the factor s inc( l /L + m). Eqs. (18), (19) 
and (20) are the key result of this paper and they 
completely describe a phase quantized LRFEL. Be- 
cause of its intrinsic importance and in order to 
illustrate these results we shall study in detail the 
case N = 2 (binary optics). 

Let us consider a binary LRFEL with W x = Wy = 1 
and focal length f. A lens satisfying this equality is 
shown in Fig. 2(a). The binarization of the LRFEL 
implies the existence of infinite focal planes. If we 
illuminate it with a plane wave the position of these 
planes is given by f~, = f / (2m + i). In each focal 
plane (identified by a value of m) there is no single 
focalization as in a regular zone plate; due to the low 
resolution effects we always have infinite focaliza- 
tions due to each (k, l) lens in Eq. (18). At distance 
f we have a matrix of focalizations with coordinates 
(kX, 1Y). At the distance f / 3 ,  we now also have a 
matrix of focalizations with coordinates (kX/3, 
IF/3) as given by Eqs. (20) and (8), with L = 2 and 
m = l .  

We shall also show, graphically rather than math- 
ematically, that the combination of phase quantiza- 

(b) (o) 

Fig. 2. (a) Binary LRFEL conespondiag to W x ffi Wy = !. (b) Binary representation of --(Zf/3, d "4" Z_f/3tt).  (e) Binary representation of 
(zf/s.a + Z-f/5.d). Capital letters label lenses from Figs. 2(b) and 2(c) that can be identified in Fig. 2(a). 
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tion and low resolution effects can be noticed in the 
shape of  an LRFEL, as for example the one in Fig. 
2(a). In this way we will justify the visual aspect of 
the binary LRFEL. At the distances f / 3  and - f / 3  
the focalizations corresponding to - 1  ~< k ~< l and 
- 1 ~< ! < 1 lie inside the geometric projection of the 
pupil of  our lens. The lens that causes all the focal- 
izations at f / 3  is -Zf/3.d and the one that causes 
focalizafions at - f / 3  is -z - f /3 .a  (these are the 
terms m == ! and m ~ - 2  in Eq. (17), the negative 
sign affecting the lenses coming from sinc(1 + ½) 
and s inc ( -  2 + ½), and it has been taken into account 
that f l  ~ - f /3  and f _ ,  = - f / 3 ) .  We will now show, 
that it can be noticed in the shape of the LRFEL in 
Fig. 2(a) that it contains - (z / /3 .d  + Z-y/a.d)- 

The representation of  - (zl/3. d + Z-//3.d) is drawn 
in Fig. 2(b) and for simplicity we have drawn it 
binary. This representation is equivalent to the repre- 
sentation of  the binary LRFEL corresponding to 
-zf/3.d. After careful examination, note that each 
(k, I) lens of Fig. 2(b) can now be identified in Fig. 
2(a). To make it easier, two lenses are labeled as A 
and B. Then the effects of phase quanfization in each 
focal plane can also be noticed in the lens itself. We 
can do the same for f / 5  and - f / 5 .  This corre- 
sponds to Fig. 2(c) and we can also identify the 
lenses corresponding to - 2 ~ k ~< 2 and - 2 ~< l ~ 2 
in Fig. 2(a). Two of them are labeled as C and D. It 
is interesting to note that it is more difficult to see 
the lenses corresponding to f / 5  and - f / 5  than the 
ones corresponding to f / 3  and - f / 3 .  Certainly, the 
"visibility" of  the lenses from Figs. 2(b), (c) in Fig. 
2(a) probably depends on the value of sinc(m + 
I / N ) .  Although we do not prove it, in any binary 
LRFEL it always seems possible to notice the com- 
bination of binafization and low resolution effects in 
the same way as we did for W~ ~- W r ~- 1. 

6. C ~ l u s i o n s  

In this paper we have shown the following: 
(i) A sampled Fresnel lens is equivalent to the 

sum of infinite Fresnei lenses with the same focal 
length. Each lens resulting from the sampling pro- 
cess is identified by the pair of numbers (k, I) and 
the coordinates of the center of  each lens are given 
by (kX, IF). Each lens has a phase shift if compared 
with the (0, O) lens. We have found the expression 

for this phase in terms of the parameters that define 
the LRFEL. 

(ii) A phase quantized Fresnel lens can be written 
as a sum of infinite on-axis Fresnel lenses with 
different focal length. This implies the existence of 
infinite focal planes. The sampling of phase quan- 
tized Fresael lenses is equivalent to the sum of 
sampled on-axis lenses resulting from the phase 
quantization. From conclusion (i), each one can be 
written as a new infinite set of  shifted Fresnel lenses 
and each one has a phase shift given by our theory. 

(iii) For the specific case of binary LRFEL, we 
have shown that the effects of phase quantization can 
be noted in the pattern of the lens itself. In a binary 
LRFEL the lenses corresponding to f / 3  and - f / 3 ,  
f / 5  and - f / 5  . . . . .  and its phases can be seen in the 
lens itself. In this way we explain the visual aspect 
of the binary Fresnel lens. 
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