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Nondiffracting beams are of interest for optical metrology applications because the size of the beam does
not change as the beam propagates. However, accuracy can be increased if the diameter of the beam is
smaller. One technique for accomplishing this is to use the dark axial intensity profile associated with
a higher-order nondiffracting Bessel function beam. We generate these higher-order Bessel function
beams with a programmable spatial light modulator. We study the intensity patterns and the phase
dependence of these nondiffracting beams. In addition, we examine interference effects caused by
recording these patterns onto a binary spatial light modulator.
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1. Introduction

New kinds of optical lenses1–4 have been proposed
that form zero intensity along the optical axis. For
these lenses the size of the dark focal spot can be
smaller than the size of the corresponding bright
focal spot leading to increased positional accuracy.
These lens patterns are also of interest because the
output pattern consists of phase singularities.5
However, the spot size increases rapidly away from
the focus point of the lens.
In related research Durnin et al.6 have shown that

an optical beam with a Bessel function electric-field
profile can propagate without diffraction. Such op-
tical beams can have applications in such areas as
optical alignment, surveying, or optical interconnec-
tions. However, the positional accuracy of the beam
is ultimately limited by the width of the beam.
Higher-order nondiffracting Bessel function beams
with zero axial intensity have also been reported.7
The size of the dark spot for the first-order Bessel
function beam was smaller than the size of the
The authors are with the Department of Physics, San Diego
State University, San Diego, California 92182. E. Carcole’s
permanent address is the Departament de Fisica, Universitat
Autonoma de Barcelona, Bellaterra 08193, Spain.
Received 7 April 1995; revised manuscript received 2 October

1995.
0003-6935@96@040593-06$06.00@0
r 1996 Optical Society of America
corresponding bright spot from the zero-order Bessel
function beam.
In this research we form diffractive optical ele-

ments that create these higher-order nondiffracting
beams with a programmable spatial light modulator
1SLM2. Consequently the size of the beam and the
direction of the propagation axis of the beam can be
varied,8 allowing dynamic scanning of the beam.
We also examine two new aspects of this problem.
First, we study the phase dependence of these nondif-
fracting beams by superimposing them onto a con-
stant dc background. In addition, we show the
consequences of writing the patterns onto a binary
phase-only medium. Experimental results are re-
ported in which the patterns are written onto the
magneto-optic spatial light modulator9 1MOSLM2.

2. Theory

Beams that approximate this Bessel function nondif-
fracting behavior can be created with a hologram.7,10
To create higher-order nondiffracting beams, an an-
gular phase shift is introduced onto the hologram
transmission function7 as

Tn1r, u2 5 exp1inu2exp12i2pr@r02, 112

where u and r are coordinates in the hologram plane,
r0 is an adjustable scale factor, and n is an integer.
The electric field that is formed at a distance z

away from the plane of the hologram is obtained
from Fresnel diffraction theory7,10 with polar coordi-
nates as
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Here r and f are coordinates in the observation
plane, and R is the radius of the hologram. To
perform the angular portion of the integral, we
change the variables as 2p@2 1 a 5 u 2 f.
Substituting Eq. 112 for the transmission function,
performing the angular integral, and using the inte-
gral definition of Bessel functions, we obtain
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In previous work7,10 this integral was evaluated
with the stationary phasemethod andwas evaluated
at point rc 5 zl@r0. We are particularly interested
in the phase associated with this integral. The
electric field is given by

E1r, f, z2 5 C1r02ŒzJn12pr

r0 2exp1ign2. 142

Here the constantC1r02 5 l2.5@1i2.5r02, and the phase gn
is given by

gn 5 kz 1 n1f 2
p

224 1
plz

r02
1
kr2

2z
. 152

This output represents an nth-order Bessel func-
tion profile Jn1r2. The amplitude of the electric
field7,10 increases as Œz to a maximum value at a
distance of roughly L 5 Rr0@l and then sharply
decreases. The beam width remains constant over
a distance of approximately L and has a value 1for
the zero-order Bessel function beam2 ofW0 5 0.766r0.
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There are four terms in the expression for the
phase gn. Although these terms are not detectable
in intensity, we examine them with an interference
technique. The first term is the usual phase associ-
ated with a traveling plane wave. The second term
shows an azimuthal phase variation, and the num-
ber of cycles increases with the order n of the Bessel
function. The third term shows an additional longi-
tudinal phase variation. Finally the fourth term
represents a quadratic phase front. As we explain
below, the last term is not detected, and we assume
that it remains as a consequence of the approxima-
tions made in the stationary phase method.
The patterns of Eq. 112 can be encoded8 onto a SLM

by writing r2 5 1i2 1 j221D22, where i and j are
integers identifying each pixel and D is the pixel
spacing. In this case, r0 5 qD, where q is an
adjustable parameter, N is the number of pixels in
the SLM, and the size of the hologram can be written
as R 5 ND@2. With these parameters the expres-
sion for nondiffracting propagation distance L can be
written as

L 5
qND2

2l
. 162

The beam width W0 1for the zero-order Bessel func-
tion2 can be written as

W0 5 0.766qD. 172

When the value for q is changed, both the beam
diameter and the nondiffracting propagation dis-
tance are changed.
Figure 11a2 shows the hologram that encodes the

zero-order Bessel function J0 for parameter q 5 4.
When written onto the MOSLM with a pixel size of
D 5 75 µm and N 5 128, this hologram results in a
nondiffracting beam with a width of 230 µm and a
maximum propagation distance of L 5 2.28 m. The
patterns 1again for q 5 42 associated with the J1 and
J2 Bessel functions 1for n 5 1 and n 5 22 are shown in
Figs. 11b2 and 11c2, respectively, and are characterized
by spiral arms. As the order of the Bessel function
increases, the number of spiral arms also increases.
1a2 1b2 1c2

Fig. 1. Patterns written onto the MOSLM that form 1a2 the J0 Bessel function beam, 1b2 the J1 Bessel function beam, and 1c2 J2 Bessel
function beam.



1a2 1b2 1c2

Fig. 2. Output intensities measured at a distance of 1.55 m from the MOSLM showing 1a2 the J0 Bessel function beam, 1b2 the J1 Bessel
function beam, and 1c2 the J2 Bessel function beam.
When a linear phase shift is multiplied by this
pattern, much of this detail is obscured.8

3. Experimental Results

These masks were written onto a MOSLM manufac-
tured by Semetex Corporation operating in the bi-
nary phase-only mode.11 The MOSLM was illumi-
nated with collimated light from a He–Ne laser, and
the output beam was recorded with a CCD camera
with a pixel size of 12 µm connected to theMacintosh
computer through a ComputerEyes interface sys-
tem.
We have experimentally generated the first eight

Bessel function beams. Experimental intensities
are shown in Fig. 2 for the J0, J1, and J2 Bessel
function beams at a distance of 1.55 m with the
corresponding patterns from Fig. 1. The area of the
figure is approximately 1.5 mm 3 1.5 mm. It is
critical that the aberrations from the SLM be cor-
rected to generate these output beams. Otherwise
the electric-field profile is strongly distorted. A
simple technique for evaluating these aberrations
has been described elsewhere12 and was used to
obtain these results.
As the order of the Bessel function increases, the

diameter of the dark spot increases as expected.
The diameter of the dark spot for the J1 beam is
clearly smaller than the spot size for the J0 beam in
agreement with theory. The main lobes of the J1
Bessel function are separated by 204 6 36 µm 1where
the error is caused by the pixel size of the camera2 in
good agreement with the theoretical value of 170 µm.
The diameter of the dark spot for the J1 beam in Fig.
21b2 is 72 6 12 µm. This is much smaller than the
size of the J0 Bessel function beam shown in Fig. 21a2
in agreement with theory.
The higher-order Bessel function beams are also

nondiffracting. Figure 3 shows the J1 Bessel func-
tion beam measured at distances of 0.9, 1.55, and
2.20 m, and the size of the beam remains constant.
Similar results were obtained for all the higher-
order Bessel function beams.
As with the zero-order nondiffracting beam,8 we

have demonstrated that we can translate and rotate
the propagation axes of these nondiffracting beams
by modifying the generating patterns written onto
the MOSLM.

4. Phase Dependence of Bessel Function Beams

We can examine the phase dependence predicted by
Eq. 152 by adding an additional dc intensity beam and
examining the resulting interference between the
nondiffracting beam and the dc beam. This can be
experimentally implemented by adjusting the out-
put polarizer on the MOSLM that allows a dc
component to be transmitted.11 The dc electric field
is a traveling plane wave and is written as

Edc exp1ikz2. 182

The total light intensity I1z2 then varies as a function
of propagation distance caused by interference ef-
fects between the Bessel function beam and the
1a2 1b2 1c2

Fig. 3. Output intensity for the J1 Bessel function beam at distances of 1a2 0.9 m, 1b2 1.55 m, 1c2 2.20 m.
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uniform dc beam as

I1z2 5 Edc
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where Edc is the dc electric field and EJn1r2 is the
amplitude of the Jn Bessel function electric field
defined by

EJn1r2 5 C1r02ŒzJn12pr

r0 2 . 1102

The interference term in Eq. 192 allows us to examine
the phase dependence for the Bessel function beam.
Initially we examined the intensity pattern near the
origin 1where r < 02 and neglected the third phase
term. At a given distance z the intensity pattern
goes through n maxima as the angular variable f
varies from 0 to 2p. However, because of the second
phase term, the orientation of this intensity pattern
appears to rotate as the distance z is changed. The
period D, defined as the distance z between two
indistinguishable intensity patterns, is obtained from
Eq. 192 by

D 5
2r02

l
. 1112

For our experimental parameters this distance
D 5 28.4 cm. Figure 41a2 shows the interference
pattern for the J1 beam at a distance of 4D 5 1.128
m. The intensity pattern for the J1 Bessel function
beam shows a single maximum as the angular
variable f varies from 0 to 2p as expected. Note
that the intensity pattern reverses for each succes-
sively larger ring caused by the p phase shift be-
tween successive rings for the J1 Bessel function.
For example, in Fig. 41a2, the first and third rings are
open at the top whereas the second, fourth, and sixth
rings are open at the bottom. Figures 41b2 and 41c2
show the intensity patterns at spacings of z 5 D@4 5
7.1 cm, and, as expected, the patterns rotate by p@2
rad. Experiments examining higher-order Bessel
function beams displayed the same characteristics.
Note that the distance D between successive identi-
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cal intensity patterns does not depend on the order n
of the Bessel function.
As mentioned above, we see no evidence of the

radial phase-dependent term. If this quadratic
phase term were present in Fig. 41a2, the open area of
each successive ring would be rotated by an addi-
tional angle that would increase quadratically with
radius relative to the radius of the previous ring.
At the edges of the figure where r 5 0.75 mm this
radial phase term would have a value of kr2@2z < 2.5
rad. This is not observed. Therefore we assume
that this radial phase term is an error that arises
from the approximations in applying the method of
stationary phase. Consequently the actual phase
shift given in Eq. 152 should not have a radial phase
dependence.

5. Effects of Binarizing the Phase Pattern

In showing the propagation of the Bessel functions,
we did not show the beam at closer distances than
z 5 90 cm. At distances shorter than this value the
intensity pattern changed as a function of z, alter-
nately forming a well-defined spot and then a hole
pattern. In this section we show that this effect is
caused by the binarization of the pattern written
onto the SLM. Depending on the recordingmedium
that is used,7,8,10 the pattern of Eq. 112 is encoded as a
binary phase-only pattern or as a binary amplitude-
only pattern. In these cases some interesting ef-
fects appear.
The binarized pattern corresponding to Eq. 112 can

be expanded in a Fourier series as

o
p52`

`

apTn
p1r, u2 5 o

p52`

`

ap exp1inpu2exp12i2ppr@r02,

1122

where the strength of each term in the Fourier series
is denoted by the coefficient ap.
Because the patterns shown in Fig. 1 are square-

wave gratings, the values for the first few coefficients
are given 1assuming a binary phase-only pattern2 by

a0 5 0, a61 5 2@p, a62 5 0, a63 5 2@3p. 1132

Note that these nonzero coefficients can be written
1a2 1b2 1c2

Fig. 4. Interference patterns formed between the dc beam and the J1 Bessel function beam at distances of 1a2 1.128 m, 1b2 1.199 m,
1c2 1.270 m.



as 2@pp. Following the analysis of Eqs. 122–152, we
can represent the output as a series of Bessel-
function-type outputs as

o
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`

apC1r0@p2Œz exp1ignp2Jnp12ppr

r0 2
5 K o
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Here K 5 apC1r0@p2 is a constant that is independent
of p. Therefore each order in Eq. 1142 has the same
strength. The phase shifts gnp are now given by

gnp1r, z, f, r02 5 np1f 2
p

22 2
plp2z

r02
. 1152

The output consists of a superposition of several
Bessel function beams, each with an effective size
that is proportional to the radius r0@p and with an
effective transmission distance of L@p. The contri-
bution from the p 5 1 component has the largest
beam profile and will propagate over the longest
distance of L. The higher orders, corresponding to
the p 5 3 and p 5 5 orders, produce beams with
narrower profiles that propagate over shorter dis-
tances. Figure 5 shows the schematic behavior of
these beams. The largest p 5 1 beam travels a
distance corresponding to L. The higher-order
beams corresponding to p 5 3 and p 5 5 are smaller
and travel a shorter distance as indicated in the
figure. The negative orders correspond to virtual
nondiffracting beams and are not observed.
In a region where multiple beams coexist, interfer-

ence effects occur between the various higher-order
Bessel function beams. In the patterns shown in
Fig. 3, no such interference effects were seen because
the patterns were measured at distances greater
than L@3 where the intensities of the higher-order
beams are negligible. However, at shorter dis-
tances the resulting pattern has different character-
istics caused by these interference effects. For the
region between L@3 and L@5 we have interference
between the wider Jn and the narrower J3n beams.
In the region between L@5 and L@7 there is interfer-
ence between the Jn, J3n, and J5n beams where again
the diameters of these beams are different. This
difference in diameters affects the radial contrast in
the interference pattern. The contrast in the inter-
ference pattern should not change with propagation
distance z. However, more exact numerical evalua-

Fig. 5. Formation of higher-order Bessel function beams by the
binary patterns shown in Fig. 1.
tions of the Fresnel diffraction integral7 show some
intensity oscillations with propagation distance.
Consequently the contrast ratio changes slightly
with distance.
These effects were examined experimentally in the

region between L and L@3 for the zero-order Bessel
function beam where q 5 4 and where p 5 1 and p 5
3 contributions interfere. Following the treatment
in Section 4, we can write the intensity 1for n 5 02 as

I1z2 5 1a0EJ012
2 1 1a3EJ032

2

1 2a0a3EJ01EJ03 cos1
8plz

r02 2 . 1162

When the two Bessel function electric fields are in
phase, the intensity is strongest at the origin be-
cause of the interference between two strongly peaked
functions with different widths. When the two elec-
tric fields are out of phase, the destructive interfer-
ence at the origin leaves a doughnut-shaped pattern.
The intensity pattern oscillates as a function of
distance z and repeats at distances ofD8 defined as

D8 5
4r02

l
. 1172

Experimental examination of these interference
effects is complicated by the aberrations from the
SLM. As mentioned above, these aberrations can
be compensated12 by multiplying the transmission
function T1r, u2 in Eq. 112 by the complex conjugate
A*1r, u2 of the aberrating function.
However, when the new function A1r, u2T1r, u2 is

binarized as in Eq. 1122, the effective binarized aper-
ture function becomes

o
p52`

`

apAp1r, u2Tn
p1r, u2. 1182

Consequently, when the pattern is multiplied by the
complex conjugate of the aberrating pattern A*1r, u2,
the aberrations are corrected for only the p 5 1 term.
The higher-order terms cannot be simultaneously
corrected. Fortunately we found aMOSLMwith no
aberrations for this experiment.
For our experimental parameters, distance D8 5

3.55 cm. Experimental results are shown in Fig. 6.
Figure 61a2, taken at a distance of z 5 60.45 cm,
shows destructive interference between the wider
p5 1 beam and the narrower p5 3 beam that results
in the doughnut-shaped pattern. Figure 61b2 is taken
at a distance of z 5 62.22 cm and shows constructive
interference. Here the width of the beam appears
smaller because the intensity was much stronger
and we had to adjust the sensitivity of the camera to
avoid saturation. Otherwise the width of the beam
would have been the same as in Fig. 61a2. We again
see destructive interference at a distance of z5 64.00
cm as shown in Fig. 61c2. The measured distance
between successive maxima or minima is 3.55 cm, in
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Fig. 6. Interference patterns formed between p 5 1 and p 5 3 harmonics of the binarized pattern for the J0 Bessel function beam at
distances of 1a2 0.6045 m, 1b2 0.6222 m, 1c2 0.6400 m.
excellent agreement with theory. As mentioned
above, the contrast changes slightly as the propaga-
tion distance changes and we have chosen a distance
with excellent contrast to demonstrate this interfer-
ence. As the distance increases further than ap-
proximately z 5 90 cm, all interference effects disap-
pear because the p 5 3 beam does not propagate
beyond this point.

6. Conclusions

This research shows that higher-order Bessel func-
tion nondiffracting beams can be generated with
programmable SLM’s. It is critical that aberrations
on the SLM be corrected to obtain these results.
The width of the dark spot formed with a first-order
Bessel function beam is smaller than the correspond-
ing width of the bright spot for the zero-order Bessel
function and may be useful for such applications as
surveying in which the width of the beam is an
important parameter. We also confirm the phase
dependence of these Bessel function beams by exam-
ining the interference with a dc beam. However, we
find that the quadratic phase term is not seen
experimentally. We suspect that this term arises
because of the approximations in performing the
Fresnel integral with themethod of stationary phase.
Finally we examine the effects of binarizing the
pattern that generates these Bessel function beams
and show that additional higher-order beams are
generated with different widths and different propa-
gation distances. In regions where these beams
overlap, the resulting interferencemodifies the shape
of the nondiffracting beam. However, it can still be
used for alignment purposes. At sufficiently long
distances the beam behaves as expected. By vary-
ing the pattern written onto the SLM, we can vary
the nature of the nondiffracting beam as well as the
propagation axis at the frame rate of the SLM.
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