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Laboratori de Fı́sica Teòrica, Department d�Optica, Apartado de Correos 326, 43500 Tortosa, Spain

Received 31 August 2004; received in revised form 3 November 2004; accepted 4 November 2004
Abstract

In this paper, we solve the Fresnel diffraction integral corresponding to the propagation of a general nondiffracting

beam generated from an arbitrary finite-aperture system. The solution contains the original infinite-extent nondiffract-

ing beam times a modulating function which does not depend on the nondiffracting beam being generated. The mod-

ulating function corresponds to an average taken on a ring of the diffraction pattern of the aperture centered at the

point where the performance has to be evaluated. The solution also contains additive functions that become important

when the ring has a section lying outside the geometrical projection of the aperture. As an example, we show that the

performance of a J0 beam diffracted by a circular aperture may be intuitively understood from the characteristics of the

diffraction pattern of a circular aperture.
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1. Introduction

The scalar theory of nondiffracting beams

(NBs) was first introduced by Durnin [1]. The

first experimental investigation of these beams

showed that the theory was in agreement with
experimental results [2]. The scalar-wave equation

for free space has infinite diffraction-free solu-
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tions. The spatial spectrum of those solutions is

confined to a single ring in the spatial-frequency

domain [3]; amplitudes and phases on the ring

can be arbitrary. Some solutions can be described

by known functions; important examples are the

Bessel beams [3], the Mathieu beams [4,5] and
the parabolic beams [6]. Other solutions can be

written using modified Bessel functions [7], Han-

kel functions [8], and Weber functions [9]. The

freedom of the amplitude and phase in the spatial

spectrum of the solutions can be applied to
ed.
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design NBs [10]. Also, the superposition of NBs

with different frequencies (nondiffracting X and

Y waves) has been considered in order to obtain

diffraction-free and dispersion-free pulsed beams

[11].
There are a number of methods by which to

generate optical NBs [12]. With the axicon

[13,14], with lenses with spherical aberration [12]

and with the Fabry–Perot interferometer [15]

zero-order Bessel beams may be generated with

high diffraction efficiency. Axicon-type computer-

generated holograms have been used to generate

the zero-order and higher-order Bessel beams
[16,17]. This type of hologram may be generated

too with programmable spatial light modulators

[18,19] allowing the real time variation of the size

and the deflection angle of the beam. Long-range

Bessel beams can be generated with optical sys-

tems with spherical aberration [20]; propagation

distances over 500 m may be obtained [21]. Zero

order [22] and higher-order [23] Mathieu beams
may be generated too using computer generated

phase holograms. Acoustic NBs have been gener-

ated with two-dimensional ultrasonic transducers

[24].

The properties [12,25] of NBs are useful for

several applications; some examples: axial and

angular alignment [26], large size measurement

[27], scanning optical systems [14], optical inter-
connections [28], range-finding by triangulation

[29], optical tweezers [30] and optical microlithog-

raphy [31].

It is not possible to generate a NB exactly be-

cause such a beam has infinite extent. Analytical

expressions for the transverse and axial intensity

distributions associated with J0 Bessel beams

[32,33] and J0 Bessel–Gauss [33] beams propagat-
ing from a circular aperture have been obtained

in the Fresnel diffraction approximation for both

the far field and the near field in order to describe

diffraction effects on those beams; those expres-

sions contain integrals or infinite series which have

to be evaluated numerically in order to establish

some general propagation features of those beams.

Phase stationary principle has been used to dem-
onstrate that axicon-type [16,17] holograms gener-

ates Bessel beams. It also allows to describe certain

properties of generalized axicons [34], but the use
of this mathematical approximation does not per-

mit an accurate analysis of diffraction effects in a

general case. Still geometrical optics is the only

tool used in the derivation of the expressions to

calculate the maximum distance of propagation
[1] and the distance at which self-regeneration

properties become evident [25,30].

The aim of this paper is to develop an analysis

based on the Fresnel diffraction theory [35] in or-

der to calculate diffraction effects on general NBs

generated from an arbitrary system with finite

aperture. An analytical expression with a simple

physical meaning that allows taking into account
all diffraction effects as a function of the Fresnel

diffraction pattern of the aperture will be devel-

oped. Then, in Section 2, we will make some defi-

nitions and we will introduce the basic facts of

NBs which are important for our development.

The analysis will be developed in Section 3: we will

solve the Fresnel diffraction integral corresponding

to the propagation of a general nondiffracting
beam generated from an arbitrary finite-aperture

system; the solution we will find out contains the

original infinite-extent nondiffracting beam times

a modulating function which does not depend on

the nondiffracting beam being generated. The

modulating function will corresponds to an aver-

age taken on a ring of the diffraction pattern of

the aperture centered at the point where the per-
formance has to be evaluated. This ring will have

a radius proportional to the wavelength and the

distance from the aperture and will be inversely

proportional to a scale factor of the nondiffracting

beam. The solution will also contain additive func-

tions that become important when the ring has a

section lying outside the geometrical projection

of the aperture. In order to show how to use our
theory to describe an arbitrary beam, a particular

case will be discussed: the propagation of a J0
beam generated from a circular aperture. Then,

in Section 4 some important characteristics of the

diffraction pattern of a circular aperture are de-

rived. In Sections 5 and 6 the behavior of a J0
beam is analyzed and described from the charac-

teristics of the diffraction pattern of the circular
aperture. In Section 7 illumination with a diverg-

ing spherical wave is considered in order to obtain

long range NBs.
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2. Theoretical background. Notation

2.1. General expression for NBs

A general NB propagating in the z-axis direc-
tion may be written as

bðr0; h; zÞ ¼ kr exp ikzzð Þ
Z 2p

0

AðuÞ

� exp ikrr0 cos h� uð Þ½ �du; ð1Þ

where k2z þ k2r ¼ k2; k is the wave number and

A(u) is an arbitrary complex function. The spatial

spectrum can be obtained performing the two-

dimensional Fourier Transform (FT) of b(r 0,h,z):

Bðg;u; zÞ ¼ AðuÞ expðikzzÞd g� 1

r0

� �
; ð2Þ

where r0 = 2p/kr. This equation means that the spa-

tial spectrumof anyNB is composed of plane-waves
whosewave vectors describe a circumference. Bessel

beams of n-order are obtained by using [3]:

AðuÞ ¼ r0i�n

ð2pÞ2
expðinuÞ ð3Þ

in Eq. (1). Every type of NB has a different defini-

tion for the function A(u).
A truly NB is unlimited in transverse extent. We

will use the notation NB when the transverse ex-

tent is unlimited. We will use the notation Size-
limited NB (SNB) when the transverse extent is

limited and diffraction effects arise.
2.2. Fresnel number

For our development, we will have to consider

the diffraction of the aperture of the SNB (for in-

stance, the diffraction of a circular aperture) at
the distance z from the aperture where the perfor-

mance of the SNB should be evaluated. A conve-

nient parameter that allows characterizing a

diffraction pattern is the Fresnel number [36] NF.

For a circular aperture of radius R, illuminated

with a monochromatic plane-wave of wavelength

k it is defined as:

NF ¼ R2

kz
: ð4Þ
For a square aperture, R is half the length of its

side. Fresnel number coincides with the number of

maxima in the transverse intensity distributions

for the diffraction pattern of a circular or square

aperture.

2.3. Calculating and representing Fresnel diffraction

patterns

Let us suppose a setup that generates a SNB by

illuminating a diffractive element (DE) with a

monochromatic plane wave (later we consider the

most general case). Let us define the Cartesian
coordinates r = (x,y) in the plane z = 0. We define

a function t(r) corresponding to the transmittance

of the DE. The diffraction pattern generated by the

DE when it is illuminated with a monochromatic

plane wave Aexp(ikz), where A is the amplitude

of the plane wave, may be calculated by using

the Fresnel diffraction theory as follows [36]:

D(r 0,z) = (Aexp(ikz)/ikz)t(r)*Z(r,z) where Z(r,z) =
exp[i(k/2z)r2] and r 0 = (x 0,y 0) are the Cartesian

coordinates in the plane where the diffraction pat-

tern is calculated; also the corresponding cylindri-

cal coordinates (r 0,h) will be used. The symbol *
stands for convolution. It is convenient to define

a new function s(r 0,z):

sðr0; zÞ ¼ expðikzÞ
ikz

tðrÞ � Zðr; zÞ: ð5Þ

Evidently s(r 0,z) = D(r 0,z)/A. Working with the

function s(r 0,z) has two advantages: (i) It has no

units, this allows to avoid the ‘‘arbitrary units’’

expression in graphic representations of js(r 0,z)j
or js(r 0,z)j2 used by many authors; (ii) It is a nor-

malised function: js(r 0,z)j = 1 for t(r) = 1 (which

may correspond to the diffraction of an infinite-

sized aperture). Then, we will use Eq. (5) for the
calculation of Fresnel diffraction patterns.

Any experimental setup that generates an elec-

tromagnetic or acoustical SNB from a certain

plane (z = 0) without the use of a DE may be ana-

lyzed as well with Eq. (5) by defining a ‘‘virtual

transmittance function’’ with the following equal-

ity: t(r) = s(r,z = 0). This assures that our treat-

ment may be used in a general case. A good
example of this is the original experimental setup

used by Durnin et al. [2], which is evidently
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equivalent to having a DE with a transmittance

function that may be written as a J0 times a circu-

lar aperture.

In graphical representations of diffraction pat-

terns we will represent the amplitude js(r 0,z)j in-
stead of the intensity. This will make it easier to

visualize the diffraction effects in the points far

from the optical axis. For the particular case of

a Bessel function of arbitrary order, it is impor-

tant to note that it is not square integrable be-

cause every ring contains about the same

amount of energy, and from this point of view,

they all have the same importance. Then, we be-
lieve that it is important, from a physical point of

view, to clearly show the diffraction effects even

for points far from the optical axis because those

effects imply a important redistribution of energy

in the beam.

Finally, we are going to use the expression

‘‘geometrical projection of the aperture’’ in its rig-

orous mathematical meaning. In several sections in
this paper, we will consider a circular aperture of

radius R, centered at the optical axis and contain-

ing a DE that generates the SNB. Then, the geo-

metrical projection of this aperture at a distance

z corresponds to another circle with the same

radius R also centered at the optical axis.

2.4. Fourier transforms

The FT and the inverse FT (with a scale given

by kz) of a certain function h(r) are defined by

the following equalities:

HðuÞ ¼ F kz hðrÞ½ �ðuÞ ¼
Z Z

exp � 2pi
kz

r � u
� �

hðrÞdr;

hðrÞ ¼ F �1
kz HðuÞ½ �ðrÞ

¼ 1

kzð Þ2
Z Z

exp þ 2pi
kz

r � u
� �

HðuÞdu:

ð6Þ
3. Diffraction of general SNBs

In this section, we will solve the Fresnel diffrac-

tion integral corresponding to the propagation of a

general nondiffracting beam generated from a
finite-aperture system. We solve the integral in a

way that allows writing the final solution as the

product of the original infinite-extent nondiffract-

ing beam times a modulating function which will

be a function of the diffraction pattern of the aper-
ture but will not depend on the nondiffracting

beam being generated. The solution will also con-

tain additive functions that will be easily written in

terms of known functions for the particular case of

a Bessel beam of arbitrary order. In order to get

this result, we have to transform the diffraction

integral in a way that may look quite artificial,

but the final solution will be simple and meaning-
ful and will provide physical insights on how the

nondiffracting pattern is affected by the aperture.

We start by writing the transmittance function

t(r) of the DE as follows:

tðrÞ ¼ pðrÞbðr; 0Þ; ð7Þ

where b(r,0) is the complex amplitude correspond-
ing to a general NB as defined in Eq. (1) for z = 0

and p(r) is a generalized pupil function that may

written as the product of four functions that takes

into account several facts: (i) the aperture function

that takes into account the finite size of the DE; (ii)

a function describing any errors in the encoding

process of the DE [37]; (iii)a function that takes

into account any kind of apodization [38]; (iv) a
function that takes into account the illumination

of the DE by an arbitrary beam (in the case of

an optical SNB); this function corresponds to the

complex amplitude of the arbitrary beam in the

plane z = 0 (DE�s plane). The particular case of

spherical wave illumination will not supposed to

be included in the pupil function and it will be

studied in Section 7 in order to increase the range
of the SNB.

It is also possible to define p(r) as follows:

p(r) = s(r,0)/b(r,0). This definition may be the most

convenient when the beam is generated without

the use of a DE.

The Fresnel diffraction integral at a distance z

from the DE may be written as a FT [39]:

sðr0; zÞ ¼ expðikzÞ
ikz

Z r0; zð ÞF kz Zðr; zÞtðrÞ½ �ðr0; zÞ: ð8Þ

The calculation of the diffraction integral will be

performed in several steps.
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3.1. First step

First, we will write the diffraction field of a SNB

as a convolution of the diffraction of a NB with the

FT of the pupil function. The propagation of the
NB is a known function, so a first simplification

of the integral will be obtained. Using a basic

property of FT [39] (the FT of the product of

two functions may be written as the convolution

of the FT of each function) and Eq. (7) we may

transform Eq. (8):

sðr0; zÞ ¼ 1

kz

� �2

Z r0; zð Þ Z�1ðr00; zÞNðr00; zÞ
� ��

�F kz pðrÞ½ �ðr00; zÞ�; ð9Þ

where r00 = (x00,y00) are the Cartesian coordinates

in the plane where the convolution is carried

out and

Nðr00; zÞ ¼ expðikzÞ
ikz

Zðr00; zÞF kf Zðr; zÞbðr; 0Þ½ �ðr00; zÞ;

ð10Þ

N(r00,z) corresponds to the Fresnel diffraction of a

general NB and can be written as a convolution

integral: N(r00,w) = (exp(ikz)/ikz)b(r,0)*Z(r,z). This
convolution integral can be solved analytically by

performing the Fourier transform of N(r00,z) and

using Eq. (2):

F Nðr00; zÞ½ �ðg;uÞ ¼ expðikzÞ
ikz

AðuÞd g� 1

r0

� �
kz

� expð�ipkzg2Þ

¼ 1

i
expðikzÞ exp �ip

kz
r20

� �
Bðg;u; 0Þ:

ð11Þ

Performing the inverse Fourier transform we

obtain: Nðr00; zÞ ¼ expðikz� ipkz=r20Þbðr00; 0Þ. The

complex exponential function corresponds to a

paraxial approximation of exp(ikzz). Then, for

the sake of shortness and correctness we may write

with no loss of accuracy N(r00,z) = b(r00,z); using

this in Eq. (9), we obtain:

sðr0; zÞ ¼ 1

kz

� �2

Z r0; zð Þ Z�1ðr00; zÞbðr00; zÞ
� ��

�F kz pðrÞ½ �ðr00; zÞ�: ð12Þ
3.2. Second step

We wish now to write Eq. (12) as a convolution

integral of b(r00,z) with another function. Note that

this should allow an easy calculation of s(r 0,z) just
by performing its FT, because the FT of b(r00,z) in

Eq. (2) is written in terms of a delta function. Tak-

ing into account that convolution is a commuta-

tive operation and the following equality:

Z�1(r 0 � r00,z) = Z�1(r00,z)Z�1(r 0,z)exp(i(2p/kz)r 0r00),
we may rewrite Eq. (12) as:

sðr0; zÞ ¼ 1

kzð Þ2
Z Z

exp i
2p
kz

r0 � r00
� �

Z�1ðr00; zÞ

� F kz½pðrÞ�ðr00; zÞbðr0 � r00; zÞdr00: ð13Þ

Let us notice here a key point for our analysis.

Note that the coordinates r 0are parameters in the

integral. This fact will allow us to perform a

non-conventional analysis of this kind of integral.

Let us define a 5-dimensional function s 0(r 0,w,z)

(where w = (u,v) and u and v are new Cartesian
coordinates) that will be equivalent to s(r 0,z) for

w = r 0:

s0ðr0;w; zÞ ¼ 1

kzð Þ2
Z Z

exp i
2p
kz

r00 � w
� �

Z�1ðr00; zÞ

� F kz½pðrÞ�ðr00; zÞbðr0 � r00; zÞdr00: ð14Þ

This allows us to rewrite this integral as a con-

venient convolution integral (integrating the
coordinate r00):

s0ðr0;w; zÞ ¼ 1

kzð Þ2
g r00;w; zð Þ � bðr00; zÞ; ð15Þ

where

gðr00;w; zÞ ¼ exp i
2p
kz

w � r00
� �

Z�1ðr00ÞF kz pðrÞ½ �ðr00Þ:

ð16Þ

Now, we will perform the FT of s 0(r 0,w,z) inte-
grating the coordinates r 0. The resulting function

will not be the spatial spectrum of the diffracted

field, but a simple function (that may be denoted

as a point-dependent pseudo-spectrum) that will

allow to easily perform a meaningful analysis.

After this analysis an inverse FT will be performed

and then we will use w = r 0. If we wish to calculate
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the FT of s 0(r 0,w,z) we need to calculate the FT of

the functions b(r00,z) and g(r00,w,z). This will be

calculated in the third step.

3.3. Third step

Let us write the FT of the function g(r00,w,z):

Gðm;w; zÞ ¼ F kz exp i
2p
kz

w � r00
� �

Z�1ðr00; zÞ
�

�F kz pðrÞ½ �ðr00; zÞ
�
ðm; zÞ; ð17Þ

the Cartesian coordinates in the Fourier plane

will be denoted m = (mx,my) and (r,a) the corre-

sponding cylindrical coordinates. This expression

may be rewritten as the convolution of three

FT�s with Cartesian coordinates m0 ¼ ðm0x; m0yÞ.
Using the associative property of the convolu-

tion operation we may write Eq. (17) as

follows:

Gðm;w; zÞ ¼ i kzð Þ4 expð�ikzÞ expðikzÞ
ikz

pð�m0Þ � Zðm0; zÞ
� �

� dðm0 � wÞ: ð18Þ
The second key point in our analysis is that the

term between square brackets is the Fresnel

diffraction pattern of p(�m 0) at a distance z. The

convolution of the delta function will shift this

diffraction pattern, and then, after the convolution

it may be denoted as P(�(m�w),z). Eq. (18)

becomes:

Gðm;w; zÞ ¼ i kzð Þ4 expð�ikzÞPð�ðm � wÞ; zÞ: ð19Þ

Finally, let us calculate the FT of b(r00,z) using

Eq. (2):

F kz bðr00; zÞ½ � ¼ kzð Þ2AðaÞ expðikzzÞd r� r1ð Þ; ð20Þ
where

r1 ¼
kz
r0

: ð21Þ
3.4. Fourth step

Now, we may write the FT of s 0(r 0,w,z). After

doing so, we will perform the inverse FT. Using

Eqs. (19) and (20), we may write the FT of Eq.

(15) as:
S0ðm;w; zÞ ¼ kzð Þ2 expði kz � k½ �zÞP ð�ðm � wÞ; zÞ
� d r� r1ð ÞAðaÞ: ð22Þ

Performing the product of P with the delta

function, we may write:

S0ðm;w; zÞ ¼ kzð Þ2 expð�ikzÞ
� P ðu� r1 cos a; v� r1 sin a; zÞAðaÞ
� expðikzzÞd r� r1ð Þ: ð23Þ

This is our point-dependent (depends on w that

will become r 0 after performing an inverse FT)

pseudo-spectrum function. P is not a constant

function and it changes the pseudo-spectrum in a

different way for every w. The last key point in
our development is that the function ex-

p(�ikz)P(u � r1cos a, v � r1 sin a) is a periodic

function of a (period is 2p), and it may be

expanded in a Fourier series:

expð�ikzÞPðu� r1 cos a; v� r1 sin a; zÞ

¼
X1

m¼�1
cm w; zð Þ expðimaÞ

cm w; zð Þ ¼ expð�ikzÞ
2p

Z 2p

0

Pðu� r1 cos a; v� r1 sin a; zÞ

� expð�imaÞda
ð24Þ

In order to analyze the physical meaning of

this expression it will be convenient to transform

the expression of the functions cm(w,z). Defining

b = a + p and using this in the integral, we

obtain:

cm w; zð Þ ¼ ð�1Þm expð�ikzÞ
2p

�
Z 2p

0

P ðuþ r1 cos b; vþ r1 sin b; zÞ

� expð�imbÞdb: ð25Þ

This is the expression of cm(w,z) that we will use

in what follows. Using Eq. (24) in Eq. (23), we

obtain:

S0ðm;w; zÞ ¼ kzð Þ2
X1

m¼�1
cm w; zð Þ expðimaÞAðaÞ

� expðikzzÞd r� r1ð Þ: ð26Þ

Performing the inverse FT:
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s0ðr0,w,zÞ ¼c0 w,zð Þb r0,zð Þ þ qðr0,w,zÞ

qðr0,w,zÞ ¼
X

m 6¼0
cm w,zð Þkr expðikzzÞ

Z 2p

0

expðimaÞAðaÞ

� exp ikrr0 cos h� að Þ½ �da
ð27Þ

Finally, using w = r 0 we may write:
sðr0,zÞ ¼c0 r0,zð Þb r0,zð Þþ qðr0,zÞ,

qðr0,zÞ ¼
X

m6¼0
cmðr0,zÞkr expðikzzÞ

Z 2p

0

expðimaÞAðaÞ

� exp ikrr0 cosðh� aÞ½ �da,

cm r0,zð Þ ¼ð�1Þmexpð�ikzÞ
2p

Z 2p

0

P ðx0 þ r1 cosb,y0 þ r1 sinb,zÞ

� expð�imbÞdb:
ð28Þ
Eq. (28) is the final result of our general analysis

and will be discussed in the next sections. Note

that the diffraction pattern of a SNB at any point

r 0 may be written as the original NB b(r 0,z) modu-

lated by a function c0(r
0,z) that only depends on

the characteristics of the diffraction of the pupil

function; note that it corresponds to an average ta-

ken on a ring of radius r1 of the diffraction pattern

of the aperture centered at the point where the per-

formance has to be evaluated. Also, a function

q(r 0,z) has to be added. The function q(r 0,z)

contains infinite terms. Every term is a product

of a function cm(r
0,z) times another function. The

functions cm(r
0,z) are the Fourier coefficients of

the Fourier series expansion of the function

P(u � r1 cos a, v � r1 sin a); since this function will

show in most cases a soft behavior, the functions

cm(r
0,z) will be negligible for high values of m. This

means that a small number of terms will be needed

to calculate q(r 0,z). This will be shown for several

particular cases in Section 6. In all those cases it
is shown that q(r 0,z) may be evaluated considering

the terms corresponding to m = �4, �3, . . .,
0, . . ., 3, 4.

Note that if b(r 0,z) is a Bessel function of order

n, then q(r 0,z) may be written as a linear combina-

tion of Bessel functions. For an n-order Bessel

beam we may use the definition of A given in

Eq. (3) into Eq. (28) to obtain:
sðr0; zÞ ¼c0ðr0; zÞJn 2p
r0

r0

� �
expðinhÞ

� expðikzzÞ þ qðr0; zÞ;

qðr0; zÞ ¼
X

m6¼0
imcmðr0; zÞJmþn 2p

r0

r0

� �
� exp iðmþ nÞh½ � expðikzzÞ:

ð29Þ

We may then notice from Eqs. (28) and (29) that
the numerical design of DE [40] and the numeri-

cal calculation of apodization functions [41] to

obtain SNBs with certain properties may be

now reduced to the calculation of convenient

pupils which generates convenient diffraction pat-

terns. Also, those expressions may allow a simple

analysis of the disturbance on the orbital angular

momentum distribution of the beam [23] gener-
ated by the aperture or for the presence of an

obstacle.

3.5. Rotationally symmetric aperture

In some experimental setups, the pupil function

may be rotationally symmetric. For this particular

case the expressions that we have just developed
may be slightly simplified. Let us use cylindrical

coordinates in the definition of the functions

cm(r
0,z) in Eq. (28):

cm r0; zð Þ ¼ ð�1Þm expð�ikzÞ
2p

�
Z 2p

0

Pðr0 cos hþ r1 cosb; r0 sin hþ r1 sinb; zÞ

� expð�imbÞdb: ð30Þ

If P is rotationally symmetric, this implies that
it only depends on the magnitude of the position

vector of the point where we wish to evaluate P.

Then, we may write:

cm r0; zð Þ ¼ ð�1Þm expð�ikzÞ
2p

�
Z 2p

0

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r21 þ 2r0r1 cosðb� hÞ

q
; z

� �
� expð�imbÞdb: ð31Þ

Using a new variable d = b � h, we obtain:

cm r0; zð Þ ¼ expð�imhÞdm r0; zð Þ; ð32Þ
where
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dm r0; zð Þ ¼ ð�1Þm expð�ikzÞ
2p

�
Z 2p

0

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r21 þ 2r0r1 cosðdÞ

q
; z

� �
� expð�imdÞdd: ð33Þ

Note that c0(r
0,z) = d0(r

0,z). Let us use all this

for the particular case of an n-order Bessel beam
in Eq. (29):

sðr0; zÞ ¼c0ðr0; zÞJn 2p
r0

r0

� �
expðinhÞ

� expðikzzÞ þ qðr0; zÞ expðinhÞ;

qðr0; zÞ ¼
X

m 6¼0
imdmðr0; zÞJmþn 2p

r0

r0

� �
expðikzzÞ:

ð34Þ
Finally, for the particular case of a J0:

sðr0; zÞ ¼ e0ðr0; zÞJ 0 2p
r0

r0

� �
expðikzzÞ þ qðr0; zÞ;

qðr0; zÞ ¼
X1

m¼1
imemðr0; zÞJm 2p

r0

r0

� �
expðikzzÞ;

e0ðr0; zÞ ¼ d0ðr0; zÞ
em6¼0ðr0; zÞ ¼ dmðr0; zÞ þ d�mðr0; zÞ:

ð35Þ
Note that e0(r

0,t) = d0(r
0,t) = c0(r

0,t). Those

expressions will be used to obtain numerical results

shown in several figures.
In the following sections, we are going to ana-

lyze and illustrate the physical meaning of the

expressions we have derived. Eq. (28) shows that

the functions cm(r
0,z) depends only on the charac-

teristics of the diffraction pattern of the pupil func-

tion. The pupil function depends on the setup used

to generate the SNB. For the sake of simplicity, we

will consider a circular aperture of radius R. Then,
in the next section, we study certain characteristics

of the diffraction pattern of a circular aperture that

will be useful for the discussion of the performance

of the SNB in Sections 5 and 6.
4. Diffraction pattern of a circular aperture

The diffraction pattern of a circular aperture is

a very well known pattern that may be easily
characterized by NF as commented in Section 2.

For the cases of experimental interest the diffrac-

tion pattern of the pupil will correspond to a near

field diffraction pattern. This is not a condition for

the validity of our development but in our exam-
ples we will consider NF > 10.

The near field diffraction pattern of a circular

aperture is rotationally symmetric and it looks like

a set of NF/2 concentric light rings separated by

dark rings. Then, in the transverse amplitude pro-

file, the number of maxima and minima increase as

NF increases, but the amplitude of the oscillations

decreases (in the Fresnel integral, for NF ! 1, we
recover the aperture function). Ignoring the behav-

ior in the points close to the optical axis, the fre-

quency of the oscillations becomes slower as we

increase the radial coordinate r 0 and the amplitude

of the oscillations become stronger. Some of those

characteristics may be observed in Fig. 1, where

the transverse amplitude profile for two different

values of NF = 12.64 and 31.60 are represented.
Those Fresnel numbers may correspond to the dif-

fraction of a circular aperture with R = 2 cm,

k = 632.8 nm (He–Ne laser) at the distances

z = 50 and 20 m.

The behavior of the diffraction pattern of the

aperture around the geometrical projection of

the edge of the aperture will be important in or-

der to describe the performance of s(r 0,z) when z

is near the maximum propagation distance.

Then, we are going to develop an expression that

allows us to analyze the characteristics of this

diffraction pattern around this region. We may

expect that the diffraction of a circular aperture

will behave as a first approximation as the dif-

fraction of a sharp edge [42] for the coordinate

r 0. This implies two basic facts [42]: (i) there is
a an absolute maximum of the amplitude near

to the geometrical projection of the edge; (ii)

the intensity for the points corresponding to the

geometrical projection of the edge is reduced to

one quarter of the corresponding intensity for

an infinite aperture.

We consider then the diffraction pattern at the

coordinates (x 0 = r 0, y = 0) for r 0 around the geo-
metric projection of the edge of the aperture, and

we will assume that we may approximate the Fres-

nel diffraction integral of the aperture as follows:
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P ðr0; zÞ ’ expðikzÞ
ikz

Z þ1

�1
exp

ip
kz

y2
� �

dy

�
Z R

�1
exp i

p
kz

ðx� r0Þ2

 �

dx: ð36Þ

Using the following variable gr = (2/(kz))1/2

(x � r 0) in Eq. (36), we obtain:

Pðr0; zÞ ’ expðikzÞ 1

2
þ

ffiffiffi
2

p

2
exp �i

p
4


 �
CðgRÞ þ iSðgRÞð Þ

" #
;

ð37Þ
where

gR ¼
ffiffiffiffiffi
2

kz

r
R� r0ð Þ; ð38Þ

and C(gR) and S(gR) are the real and imaginary

parts of the Fresnel integral [36]. The amplitude
of P(r 0,z) takes its maximum value for gR = 1.22

(this has been established by numerical calcula-

tion). Solving Eq. (38) for r 0 and denoting r 0m the

position of the maximum we obtain:

r0m ¼ R� 0:855
ffiffiffiffiffi
kz

p
; ð39Þ

and the maximum value of the amplitude is:

jPðr0m; zÞj ’ 1:17: ð40Þ
(a) (
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Fig. 1. Transverse amplitude distribution of the diffraction pattern
This means that the intensity at r = rm is about

37% higher than for the case of an infinite aper-

ture. For our development it is also important to

calculate the amplitude for r 0 = R:

jP ðR; zÞj ’ 0:5: ð41Þ

This means that the intensity for r 0m = R is a

75% lower than for the case of an infinite

aperture.
5. Amplitude distribution on the optical axis

In this section and in the next section, we are

going to analyze the physical meaning of the

expressions we have derived in Section 3 and we

are going to illustrate them with several examples.

In this section, we will discuss the performance on

the optical axis using the results of Section 4. First,

let us analyze the modulating function c0(r
0 = 0,z)

for an arbitrary pupil. From Eq. (28) it may be

written as follows:

c0 0; zð Þ ¼ expð�ikzÞ
2p

Z 2p

0

Pðr1 cos b; r1 sin bÞdb:

ð42Þ
b)
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of a circular aperture for: (a) NF = 12.64 and (b) NF = 31.60.



264 E. Carcolé / Optics Communications 246 (2005) 255–274
The meaning of this function is very simple:

c0(0,z) is the average value of the diffraction pat-

tern of the aperture on a ring of radius r1 cen-

tered at the optical axis (affected by a factor

exp(�ikz), that will cancel with the factor
exp(ikz) contained in the Fresnel diffraction for-

mula in Eq. (5)).

If P is rotationally symmetric, then it shows a

constant value on the ring. From Eq. (28), this fact

implies that the other functions cm(0,z) = 0 for

m 6¼ 0; then q(0,z) = 0 on the optical axis. We con-

clude that the complex amplitude on the optical

axis for a circular aperture (or any aperture which
is rotationally symmetric) may be exactly written

as:

sð0; zÞ ¼ c0ð0; zÞbð0; zÞ: ð43Þ

From Eq. (29), note that for the J0 beam, Eq. (43)

may be also used even if the aperture is not rota-

tionally symmetric, because higher order Bessel

beams have a zero on the optical axis.

Let us continue our discussion assuming that

the pupil function is a circular aperture. We will

follow several steps that should be followed in a
similar way for any other definition of the pupil

function, but taking into account the specific prop-

erties of the diffraction pattern generated by the

pupil function. From the shape of the diffraction

pattern of a circular aperture we may easily predict

the qualitative behavior of c0(r
0,z) as we increase z

from three basic facts: (i) the radius of the ring r1
increases as z increases, (ii) the number of maxima
and minima of the diffraction pattern of the aper-

ture decreases (the frequency of the oscillations de-

creases) because NF decreases as z increases, (iii)

the amplitude of the oscillations of the diffraction

pattern of the aperture increase with z because

NF decreases as z increases. Then, the ring will

lie on consecutive maxima and minima: c0(r
0,z) will

show an oscillatory behavior as z increases and the
amplitude of those oscillations will increase and

the frequency will decrease. When the ring lies

on the last maximum of the diffraction pattern of

the circular aperture, c0(0,z) will have reached its

last maximum. We denote zm the position of this

last maximum. This is a important maximum be-

cause it is an absolute maximum near the maxi-

mum propagation distance, as we shall see. zm
may be calculated using r0m ¼ r1 in Eq. (39) and

the definition of r1 in Eq. (21) to obtain:

R� kzm
r0

¼ 0:855
ffiffiffiffiffiffiffiffi
kzm

p
: ð44Þ

Solving for zm and considering R/r0 � 1:

zm ¼ Rr0
k

1� 0:855

ffiffiffiffi
r0
R

r
þ 0:265 � r0

R

� �
: ð45Þ

From Eq. (40), we may write:

jcð0; zmÞj ’ 1:17: ð46Þ
For z > zm the ring lies on a region where the

amplitude monotonically decrease, then c0(r
0,z)

also monotonically decreases. In this region, for

a certain distance that we will denote as zD, the
ring achieves a radius equal to the radius of the cir-

cular aperture. Using Eq. (21) and r1 = R, we

obtain:

zD ¼ Rr0
k

; ð47Þ

and using Eq. (41), we may write:

jc0ð0; zDÞj ’ 0:5; ð48Þ
zD is known as the maximum distance of propaga-

tion for the J0 beam when a circular aperture is
used and it was first defined from arguments based

on geometrical optics [2].

All those results are illustrated in Fig. 2, where

the amplitude of c0(0,z) (calculated with Eq. (33))

is represented as a function of z/zm (zm is calcu-

lated using Eq. (45)) for five cases, R/r0 = 10, 20,

50, 100, 200; the last z considered for every case

is zD. It is interesting to note that NF = R/r0 for
z = zD. We may see that zm and zD become very

close distances for R/r0 � 1. This can be also easily

concluded using Eq. (47) in Eq. (45):

zm ¼ zD 1� 0:855

ffiffiffiffi
r0
R

r
þ 0:265 � r0

R

� �
: ð49Þ

In the figures we may observe that the maxi-

mum value tends to be 1.17 as predicted in Eq.

(46). Also note that for z = zD the amplitude tends

to be 0.5 as predicted in Eq. (48). As we may see in
Fig. 2, Eq. (49) is highly accurate even for low val-

ues of NF. We will consider again the distance zm
when we deal with long-range NBs in Section 7.
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Fig. 2 shows also the accuracy of the ‘‘straight

edge’’ approximations performed in the last sec-

tion. It was first noted by Durning [1] the similarity

of the behavior of a SNB on the optical axis with

the Fresnel diffraction pattern of a straight edge.
6. Transverse amplitude distribution

As in the last section, we start by studying

c0(r
0,z). Its physical meaning is simple. From

Eq. (28), c0(r
0,z) corresponds to the average of

the diffraction pattern P at a distance z on a ring
of radius r1 centered at the coordinates r 0.

c0(r
0,z) acts as a modulating function of the

NB b(r 0,z).

Let us consider P a circular aperture. The ring

will be lying on several maxima and minima of

the diffraction pattern. If we consider c0(r
0,z) for

a certain z, we may expect that as r 0 increases

from zero, c0(r
0,z) should oscillate around unity.

For r 0 > R � r1, the ring will start lying outside

the geometrical projection of the aperture and

the amplitude of c0(r
0,z) will start to decrease.

For r 0 = R the center of the ring lies at the edge
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Fig. 2. Magnitude of the amplitude of c0(0,z) as a function of

z/zm for (a) R/r0 = 10, (b) R/r0 = 20, (c) R/r0 = 50, (d) R/

r0 = 100, (e) R/r0 = 200. The upper dashed line corresponds to

c0(0,z) = 1.17.
of the geometrical projection of the aperture, so

c0(r
0,z) < 0.5. For r 0 P R + r1 we expect a negligi-

ble value for c0(r
0,z).

In order to describe the performance of the

SNB for r 0 > 0 the functions cm(r
0,z) for m 6¼ 0

have to be also considered. Those functions ap-

peared from a Fourier Series development of a

periodic function (the function P on a ring of ra-

dius r1 centered at r 0) in Eq. (24) and should

show the same properties of any Fourier coeffi-

cients. Then cm(r
0,z) will take values different

from zero if P is not a constant function on the

ring. This may happen for two reasons in two
different cases:

(i) The ring lying inside the geometric projection

of the aperture (r 0 < R � r1): In this case P

will not be a constant function because the

diffraction pattern behaves as an oscillatory

complex function and the amplitude consists

on a set of concentric maxima and minima.
For low Fresnel numbers we expect the

coefficients cm(r
0,z) to have a non-negligible

(but not strong) contribution to the distortion

of the diffraction pattern of the SNB. As

higher Fresnel numbers are considered, the

amplitude of the oscillations are smaller and

the functions cm(r
0,z) for m 6¼ 0 will become

smaller.
(ii) The ring having a section lying outside the

geometric projection of the aperture

(R � r1 < r 0 < R + r1): Then a sector of the

ring will lie on a region where P takes very

low values: this implies a much stronger vari-

ation of P on the ring. This fact is very impor-

tant and it will make the functions cm(r
0,z) to

take larger values than in case (i). Then we
expect a very important distortion of the dif-

fraction pattern for r 0 > R � r1. For

r 0 > R + r1 the functions cm(r
0,z) should have

negligible values.

From (i) and (ii), if the diffraction pattern of the

aperture corresponds to a large Fresnel number it

is possible to derive an analytical asymptotic
approximation of the functions cm(r

0,z). This is

done in Appendix A. When the diffraction pattern

of the aperture corresponds to lower Fresnel
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numbers we expect the functions cm(r
0,z) only to

follow approximately their asymptotic behavior

in case (ii), because the main contribution to func-

tion cm(r
0,z) should come from the finite size of the

diffraction pattern of the aperture. Comparisons of
those asymptotic values and the real ones will be

shown in several figures.

All this discussion obviously applies to the func-

tions in dm(r
0,z) defined in Eq. (33) and the func-

tions em(r
0,z) defined in Eq. (35) as well.

The performance of the SNB will also strongly

depend on r1, the radius of the ring. In the next

sections we will discuss the transverse amplitude
distribution of the diffraction pattern of a J0 beam

generated with a circular DE in four representative

cases, r1/R � 1, r1/R � 0.5, r1=R ¼ r0m=R < 1 and

r1/R = 1 (equivalent to z = zD), and for every case

we will consider the Fresnel numbers used in Fig.

1. In every case, we will choose a certain value

for NF and for r1/R, then r0 may be easily calcu-

lated using Eqs. (4) and (21): r0/R = R/r1NF. The
graphical representations for each case correspond

to Figs. 3–6. Every figure will be discussed in a dif-

ferent section. For every case, we show a compar-

ison of the amplitude distribution corresponding

to: (i) Exact calculation using the Fresnel diffrac-

tion integral in Eq. (5), (ii) Calculation using our

development (Eq. (35)) with the following

approximation:

sðr0; zÞ ’ e0ðr0; zÞJ 0 2p
r0

r0

� �
expðikzzÞ

þ
X4

m¼1

imemðr0; zÞJm 2p
r0

r0

� �
expðikzzÞ:

ð50Þ
We do this in order to show the high conver-

gence of our development (for most cases (i) and

(ii) are undistinguishable), and (iii) calculation

for an infinite aperture; this way we will observe

the modulation or distortion due to the diffraction

effects suffered by the SNB. Also the amplitude of

em(r
0,z) for m = 0, 1, 2 are represented for each

case in order to justify the shape of the transverse

amplitude distributions and in several figures (the

ones that contain a important interval for

r 0 > R � r1) we represent also the asymptotic func-

tions derived in Appendix A.
6.1. r1/R � 1

In this case e0(r
0,z) corresponds to an average

value performed in a small ring. Taking into ac-

count the shape of the transverse amplitude distri-
butions of the diffraction pattern of the aperture

shown in Fig. 1, we expect e0(r
0,z) to behave as

an oscillating function for r0 < r0m and to have

approximately the same number of maxima and

minima than the diffraction pattern of the aper-

ture. We expect also that for r0 > r0me0ðr0; zÞ should
show a decrease that corresponds to the diffraction

pattern of the aperture. Those oscillations and the
final decrease will modify in a non-negligible way

the shape of the NB. The higher the Fresnel num-

ber of the aperture, the lower those oscillations

should be. The functions em(r
0,z) for m 6¼ 0, should

take non-negligible values for r0 < r0m (because the

noticeable oscillation of the diffraction pattern of

the aperture) and also we expect them to be more

important for lower Fresnel numbers. For r0 > r0m
the ring lies in a region where the amplitude of

the diffraction pattern shows a very steep decrease,

then the functions em(r
0,z) for m an odd integer,

clearly should raise in this region. We may illus-

trate all this in Fig. 3, where we consider two dif-

ferent cases (i) NF = 12.64, r1/R = 0.0880 and

r0/R = 0.899; (ii) NF = 31.60, r1/R = 0.0820, r0/

R = 0.386. For both cases: (i) the ring lies on a
maximum of the diffraction pattern of the aperture

for r 0 = 0; (ii) the scale factor for J0 is big and the

oscillations of e0(r
0,z) are fast. Then we observe a

distorted J0 rather than a modulated J0.

In this case the ring is very small, and the func-

tions are highly sensitive to the characteristics of

the diffraction pattern of the aperture. The interval

of points that verify r 0 > R � r1 is very small.
Then, we may expect no agreement between the

functions em(r
0,z) and the corresponding asymp-

totic values and they are not represented.

6.2. r1/R � 0.5

In this case, the integral that define the function

e0(r
0,z) is performed on a larger ring, so we expect

the amplitude of the oscillations to be smaller and

because the ring is closer to the edge, we expect the

oscillations to be slower (As one may see from
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Fig. 3. Transverse amplitude distribution corresponding to a J0 and graphical representation of three of the functions em(r
0,z) for two

cases: figures (a) and (b) correspond to: NF = 12.64, r1/R = 0.0880, r0/R = 0.899; figures (c) and (d) correspond to: NF = 31.60,

r1/R = 0.0820, r0/R = 0.386. In figures (a) and (c) dashed line corresponds to a perfect J0 function, continuous line corresponds to an

exact calculation with the Fresnel diffraction integral, dotted line corresponds to an approximation using four terms. In figures (b) and

(d) the function e1 has been represented with a thicker line.
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Fig. 1 the oscillations of the diffraction pattern are

slower as more close they are from the geometrical

projection of the edge of the aperture).

In this case, the scale of J0 is reduced. Then,

we expect to observe a modulated J0 (stronger
modulation for lower Fresnel number) instead

of a distorted J0 as in Fig. 3. To illustrate this,

we consider two examples in Fig. 4: (i) NF =

12.64, r1/R = 0.52, r0/R = 0.152; (ii) NF = 31.60,

r1/R = 0.478, r0/R = 0.066. For both cases: (i)
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Fig. 4. Transverse amplitude distribution corresponding to a J0 and graphical representation of three of the functions em(r
0,z) for two

cases: figures (a) and (b) correspond to: NF = 12.64, r1/R = 0.52, r0/R = 0.152; figures (c) and (d) correspond to: NF = 31.60,

r1/R = 0.478, r0/R = 0.066. In figures (a) and (c) dashed line corresponds to a perfect J0 function, continuous line corresponds to an

exact calculation with the Fresnel diffraction integral, dotted line corresponds to an approximation using four terms. In figures (b) and

(d) the function e1 has been represented with a thicker line and the dashed line corresponds to the asymptotic approximation for each

function.
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the ring lies on a maximum of the diffraction

pattern of the aperture when it is centered on

the optical axis. (ii) For r 0 > R � r1, the ring lies

outside the geometrical projection of the aper-
ture, and in the graphics, one may observe that

in this region e0(r
0,z) decreases and the other

function em(r
0,z) raise and follow a behavior

close to their asymptotic values. Then for
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Fig. 5. Transverse amplitude distribution corresponding to a J0 and graphical representation of three of the functions em(r
0,z) for two

cases: figures (a) and (b) correspond to: NF = 12.64, r1/R = 0.762, r0/R = 0.1035; figures (c) and (d) correspond to: NF = 31.60,

r1/R = 0.826, r0/R = 0.0383. In figures (a) and (c) dashed line corresponds to a perfect J0 function, continuous line corresponds to an
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r 0 > R � r1 the performance of the J0 worsens:

the oscillations of J0 decreases and finally takes

a value that seems to correspond to an average
value of the former oscillations. This may be also

observed in Figs. 5 and 6.
6.3. r1=R ¼ r0m=R

In this case the ring lies on the last maximum of
the diffraction pattern of the aperture when it is

centered on the optical axis; from Eq. (44) this will
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Fig. 6. Transverse amplitude distribution corresponding to a J0 and graphical representation of three of the functions em(r
0,z) for two

cases: figures (a) and (b) correspond to: NF = 12.64, r1/R = 1, r0/R = 0.0791; figures (c) and (d) correspond to: NF = 31.60, r1/R = 1,

r0/R = 0.03164. In figures (a) and (c) dashed line corresponds to a perfect J0 function, continuous line corresponds to an exact calculation
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has been represented with a thicker line and the dashed line corresponds to the asymptotic approximation for each function.
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happen for r1=R ¼ r0m=R ¼ 1� 0:855=N 1=2
F . Then in

Fig. 5, two cases are considered: (i) NF = 12.64, r1/

R = 0.762 and r0/R = 0.1035; (ii) NF = 31.60 and

r1/R = 0.826 and r0/R = 0.0383 (Note that the scale

factor for J0 is now still smaller). For this case we

observe that e0(r
0,z) shows a continuous decrease
in its value because the ring, initially centered at

the optical axis, was at the maximum of the diffrac-

tion pattern of the aperture and near the geometri-

cal projection of the edge of the aperture. This

continuous decrease modulates J0. The other func-

tions em(r
0,z) follow a closer behavior to the
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asymptotic values for r 0 > R � r1, which implies a

complete distortion of the performance of the

SNB in that region. Note that in this case, there

are smaller differences for different Fresnel num-

bers. The reason for this is that the behavior of
the diffraction pattern near the geometrical projec-

tion of the edge of the aperture does not show

important differences for different Fresnel numbers

as may be concluded from Section 4; the only

important difference is a scale factor that depends

on NF.

6.4. r1/R = 1

This case corresponds to z = zD. Two examples

are considered in Fig. 6: (i) NF = 12.64, r1/R = 1,

and r0/R = 0.0791, (ii) NF = 31.60, r1/R = 1, r0/

R = 0.03164. The function e0(r
0,z) has a value near

to 0.5 (as predicted in Eq. (48)) in the optical axis

and it softly decays as we consider higher values of

r 0. In this case the modulating effect of e0(r
0,z) is

small. The diffraction pattern of the Bessel beam

will then be highly distorted because the condition

r 0 > R � r1 becomes r 0 > 0; this condition is evi-

dently fulfilled for any r 0 and then em(r
0,z) take

important values even near the optical axis. Note

that the behavior of the Bessel beams and the func-

tions em(r
0,z) is almost the same for both cases; the

only difference is a scale factor as already noted in
Section 6.3. The functions em(r

0,z) show a behavior

still closer to the asymptotic values; the exception

is e1(r
0,z) near the optical axis.

We have then shown that the appearance of any

SNB can be predicted or justified from the shape

of the diffraction pattern of the aperture and from

the size and shift of the ring. In the figures a J0
beam has been considered but the discussion and
the results applies on general NBs generated with

the same aperture (note that the functions em(r
0,z)

do not have any dependence with the SNB being

generated).
7. Long range SNBs

The maximum propagation distance of a cer-

tain SNB may be too small for a certain optical

application. When this happens, one possible solu-
tion is to illuminate the DE with a divergent spher-

ical wave [12] or to encode it in the DE. In this

way, we may increase the diffraction range obtain-

ing a long range divergent SNB [27]. We will now

calculate the complex amplitude distribution in
such a case.

If a spherical wave with origin at a distance d

from the DE illuminates the DE, the complex

amplitude distribution may be written, using Eq.

(5), as:

sdðr0; zÞ ¼
expðikzÞ

kz

Z Z
tðrÞ exp ik

2d
r2

� �

� exp
ik
2z

½r0 � r�2
� �

dx dy; ð51Þ

where the convolution is explicitly written. Defin-

ing M = (d + z)/d and using it in Eq. (51), we

obtain:

sdðr0; zÞ ¼
1

M
exp ik

z2

d þ z

� �

� exp
ik

2ðzþ dÞ r
02

� �
s

r0

M
;
z
M

� �
: ð52Þ

Thus we have exactly the same light distribution
at z as we had before at z/M = zd/(z + d), but

affected by a scale factor given by M. Then, the

maximum distance of propagation becomes z0D ¼
dzD=ðd � zDÞ.

If we wish the range to be infinite and we con-

sider a circular aperture as a pupil, we may pro-

pose to use d = zm instead of zD, for three

reasons: (i) jc0(0,0,zm)j2/jc0(0,0,zD)j2 is about 5.5,
(ii) both distances are very similar as it was shown

by means of Eq. (49), (iii) the performance is better

at z = zm. Note that (i) and (iii) are important if we

are considering a long range or even an infinite

range of propagation because atmospheric turbu-

lences may affect intensity and performance. Then

assuming d = zm for z ! 1, we may write the

complex amplitude distribution as:

sfðr0; zÞ ¼
1

z
exp ikzð Þ exp ik

2z
r02

� �
s
zm
z
r0; zm


 �
:

ð53Þ
Note that the far field diffraction pattern corre-

sponds to the one for z = zm when the DE was illu-

minated by a plane wave, but with a scale factor
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z/zm. Note that the intensity of this ‘‘diverging

SNB’’ will decay as (1/z)2 as any far field diffrac-

tion pattern.
8. Conclusions

A diffraction theory based on Fresnel diffrac-

tion has been developed in order to evaluate the

performance of a SNB generated with an arbitrary

finite-aperture system. We have shown the

following:

(i) The Fresnel diffraction integral may be

exactly solved in terms of the diffraction pat-

tern of the aperture of the system. This has

been done by transforming the Fresnel dif-

fraction integral and then defining a conve-

nient 5-dimensional function. The Fourier

Transform of this function is simple and

defines a point-dependent pseudo-spectrum
function. The simplicity of this function

allows to develop a meaningful analytical

analysis.

(ii) The solution we have found out contains the

original infinite-extent nondiffracting beam

affected by a modulating function. This mod-

ulating function does not depend on the non-

diffracting beam being generated and it
corresponds to an average taken on a ring

of the diffraction pattern of the aperture cen-

tered at the point where the performance has

to be evaluated. This ring has a radius pro-

portional to the wavelength and the distance

from the aperture and is inversely propor-

tional to a scale factor of the nondiffracting

beam. The solution also contains additive
functions that become important when the

ring has a section lying outside the geometri-

cal projection of the aperture. Then, the per-

formance of a SNB may be justified or

predicted from the characteristics of the dif-

fraction pattern of the aperture of the system

that generates the SNB and the size and shift

of the ring.
(iii) We have studied the J0 beam diffracted by a

circular aperture and we have shown that its

characteristics may be easily understood from
the properties of the diffraction pattern of a

circular aperture. The results apply to a gen-

eral nondiffracting beam generated with the

same aperture.

(iv) This theoretical development is useful to
describe nondiffracting X and Y beams,

because they are a superposition of NBs with

different frequencies.

(v) The numerical design of DE [40] and the

numerical calculation of apodization [41]

functions to obtain SNBs with certain proper-

ties may be now reduced to the calculation of

convenient pupils which generates convenient
diffraction patterns.

(vi) Our theoretical results may allow a simple

analysis of the disturbance on the orbital

angular momentum distribution of the beam

[23] generated by the aperture or for the pres-

ence of an obstacle.

Finally, we expect that the mathematical analy-
sis used in this paper may be useful for the descrip-

tion of other beams or diffraction patterns that are

theoretically infinite in extent, as Talbot self-

images or computer-generated Fresnel holograms

[36].
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Appendix A. Asymptotic behavior of the functions

cm(r
0,z)

If we consider NF � 1 then, we may write the

diffraction of the pupil function as:

P ðr0Þ � expðikzÞcirc r0

R

� �
; ðA:1Þ

where circ(r 0/R) is a circle function: this function

is zero outside a circle of radius R and unity in-

side the circle. With this approximation, we may

easily calculate the contribution to the function

cm(r
0,z) coming from the fact that the ring of ra-

dius r1 lies on a region outside the geometrical
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projection of the aperture. Then we wish to

calculate:

cm r0; zð Þ ¼ ð�1Þm

2p

Z 2p

0

circ
x0 þ r1 cosb

R
;
y0 þ r1 sinb

R

� �
� expð�imbÞdb: ðA:2Þ

For the sake of simplicity, let us write x 0 = r 0

and y 0 = 0 (this is equivalent to consider

(r 0,h = 0) in cylindrical coordinates) and we will

assume RP r1. Two intervals have to be

considered:

(i) r 0 < R � r1: then c0 = 1 and cm = 0 for m 6¼ 0.

In this interval we expect a perfect reconstruc-

tion of the SNB.
(ii) For R � r1 < r 0 < R + r1 the ring will have a

sector which lies inside the circle. This sector

will start and end in the points where the cir-

cumference that defines the aperture coincides

with the ring; this happens for two angles �b0
and b0 that may be obtained by solving the

following equation:
ðr0 þ r1 cos bÞ2 þ r21 sin b
� �2 ¼ R2: ðA:3Þ

Solving for cos(b), we obtain:

cos 	b0ð Þ ¼ R2 � r21 � r02

2r0r1
: ðA:4Þ

Using Eqs. (32) and (33), we may rewrite Eq.

(A.2) as cm(r
0,z) = exp(�imh)dm(r 0,z) and:

dm r0; zð Þ ¼ ð�1Þm

2p

Z 2p�b0

b0

expð�imbÞdb: ðA:5Þ

Performing the integral we obtain:

d0ðr0; zÞ ¼ 1� b0

p
dmðr0; zÞ ¼ ð�1Þmþ1 sin mb0ð Þ

mp
:

ðA:6Þ
Note that b0 = 0 for r 0 = R � r1, b0 = p/2 for

r0 ¼ ðR2 � r21Þ
1=2

and b0 = p for r 0 = R + r1. The

maximum value of d0(r
0,z) is 1 but the maximum

value of the other dm(r
0,z) is 1/mp. The function

dm(r
0,z) will show 0.5*m oscillations in this inter-

val. Inside the geometric projection of the pupil,
for r0 < ðR2 � r21Þ
1=2

we expect then that dm(r
0,z)

will show 0.25*m oscillations. This means, for in-

stance, that for r0 ¼ ðR2 � r21Þ
1=2

we expect d1(r
0,z)

to take its maximum value and d2(r
0,z) to be near

zero. Also, we may consider the functions em(r
0,z):

e0ðr0; zÞ ¼ 1� b0

p

emðr0; zÞ ¼ ð�1Þmþ1
2
sin mb0ð Þ

mp
: ðA:7Þ

Analogous comments apply to these functions.
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