
Diffraction efficiency of
low-resolution Fresnel encoded lenses

E. Carcol6, J. Campos, 1. Juvells, and S. Bosch

A mathematical model to describe the behavior of low-resolution Fresnel lenses encoded in any

low-resolution device (e.g., a spatial light modulator) is developed. From this model the diffraction
efficiency is calculated in terms of all the parameters that characterize these lenses.
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1. Introduction

One of the most promising applications of pixelated
spatial light modulators (SLM's) is their use as
variable focal-length lenses in optical setups.1 This
involves the low-resolution codification of a quadratic
wave. The effects of this process on lens perfor-
mance have been described recently with a mathemati-
cal model developed by Carcol6 et al.

2 With this
model an expression for the light-amplitude distribu-
tion for all focal regions can be established. This
expression is a function of several adimensional pa-
rameters that depend on the characteristics of the
low-resolution device and the focal length encoded.
This implies a dependence of the shape of the distribu-
tion on the focal length.

The most important difficulty of a low-resolution
Fresnel encoded lens (LRFEL) is its multifocusing
property, which involves an important loss of image
quality and diffraction efficiency. On the other hand,
this is an advantage if the LRFEL is used as an array
illuminator. The aim of this paper is to perform a
rigorous calculation of the diffraction efficiency of a
LRFEL making use of the model. In Section 2 the
main results of Ref. 2 are explained in relation to our
development. The diffraction efficiency is obtained
for the (0, 0) order in Section 3 and for the (k, 1) order
in Section 4. In Section 5 we comment on the
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generalization to any shape of the pixels and the pupil
and draw some conclusions.

2. Theoretical Background

When a single Fresnel lens with focal length f for a
wavelength X is encoded in a pixelated low-resolution
device (a quadratic phase is encoded), with a center-to-
center pixel distance given by Ax and Ay, infinite new
focal regions appear at the coordinates (kX, 1Y), where

Xf
X= X A

Y Xf
AY

(1)

and (k, 1) are arbitrary integers. XY also defines the
apparent area of the lens associated with each focus.2

Then, if the device has N x M pixels with a rectangu-
lar pupil of dimensions LX = NAx and Ly = MAy, the
number of lenses appearing in the device is given by

LX Lyw =-, WY x Y (2)

In Fig. 1 we can see a single binary LRFEL with Wx =
Wy = 3. Note that it appears to be an array of 3 x 3
lenses.

The light distribution at a (k, 1) focus of an infinite
phase-level LRFEL for a plane-wave illumination is
given by [Eq. (20) of Ref. 2]

A LxLy [ /Lxx Ly
Um, (xi,yi) = 7x- Axy i sinck Xf ' Xf

x exp[i 2 (xkX + ylY)* rect -(X' y (
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use of the Parseval theorem, we obtain

Eoto = (fcXcY)2 f f rect x Lf O

x sinc2 (Ax'f., Ay'fy)dfxdfy,

Fig. 1. Binary LRFEL with Wx = W = 3; i.e., an array of 3 x 3.

where A is the amplitude of the incident wave and *
means convolution. The sinc function comes from
the Fourier transform of the rectangular pupil of the
device, and the rect function defines the pixel of
dimensions Ax'Ay'.4 Other useful parameters are

Ax' AYI
cx= 7 c= Ay (4)

In our development we take A = 1 for simiplicity.
From Eq. (3) it can be deduced that there is a focal

length that gives maximum intensity on the optical
axis. If c = c and LX = Ly, then this maximum
occurs for

Ax'Lx
fopt = 073 A (

We call fopt the optimum focal length because, giving a
maximum intensity on the axis, the light distribution
has a full width at half-maximum that is comparable
with the width obtained with an infinite-resolution
lens bounded by the same pupil.

3. Diffraction Efficiency of the (0, 0) Focus

From Eq. (3) the light-amplitude distribution for the
(0, 0) focal region (U0,0) is given by

U0,0(Xi, Yi)

where f and fy are the frequency coordinates in the
Fourier space. This is the volume under the product
of a squared sinc function and the rect function. In
the general case it is the volume under the product of
the Fourier transform of the pixel function (the
function that defines the pixel) and the pupil func-
tion.

To study this expression, we define the following
adimensional coordinates:

g = Ax'f., gy = AY'fy, (9)

and by using the definition of the rect function, we
can rewrite Eq. (8) in terms of our parameters:

1 1 c/2 Pd/2
Eo = L L (c c )2 - - I I

x sinc2(gx, gy)dgdgy, (lOa)

where

c = Wxcx, d = Wycy. (lOb)

We are encoding a phase function with ideal unity
transmission. Then the amount of energy that goes
through the LRFEL is

Et = LxLyecy. (11)

Thus we can define the diffraction efficiency Et as the
ratio of the energy arriving at the (0, 0) focus (E0,0)
and the total energy going through the lens (Et).
Then et is given by

_. CYc c/2 ~d/2 2( g dgdg.
-t ed a) sinc2(g ,gy)dgdgy. (12)

-/2 -d/2
1 LLy. Lxx LYY x y=af x~y si f * rect A .

T o c a c u a t t h e e n r g c o c n t a e a t 7 t h -o csy 0 0
(6)

To calculate the energy concentrated at the focus E0,0,
we must evaluate

E, = f U Uo0 (x y) 1 2 dxdy. (7)

Direct calculation of Eq. (7) is rather difficult. To
simplify calculations, we can use the Parseval theo-
rem,4 which establishes the possibility of evaluating
E0,0, by performing the surface integral on the square
modulus of the Fourier transform of UO,o. Making

The total diffraction efficiency, taking into account
the amount of energy illuminating the lens, is then
given simply by e = EteCCy. We prefer to work with
et, because in this way, et = 1 then means that all the
possible energy is concentrated at the (0, 0) order, and
there is no concentration of light in other orders.

We can now study the behavior of this expression in
terms of the values of the parameters c and d. With
Eqs. (lob), (4), (2), and (1) the relation of c and d to the
focal length is

LAx' 1

X f

LyAy' 1

X f
(13)
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Fig. 2. Diffraction efficiency of the LRFEL at the (0, 0) focus as a
function of the following: (a) the focal length normalized to fopt
(the solid curve indicates efficiency and the dashed curve indicates
the intensity on the optical axis); (b) the parameter c (the dashed
curve is for c = 1.34 or f = opt).

We now study the following cases:

(i) A large focal length is encoded or there are
small pixels: From Eq. (13), when f >> LAx'/X and
f >> LyAy'/X, then (c, d) < 1. In these conditions
we say that a large focal length encoded. Then the
value of the integral in Eq. (12) tends to the value of
the product cd, and the diffraction efficiency is writ-
ten simply as

et = CXCY. (14)

Note that, if and only if c, = cy = 1, the diffraction
efficiency tends to unity. If not, the other (n, m)
focus will always concentrate a fraction of Et, and the
maximum diffraction efficiency available is less than
one.

(ii) A short focal length is encoded: From Eq.
(13), when f << LAx'/X and f << LyAy'/X, then
(c, d) >> 1. In these conditions we say that a
short-focal-length-lens is encoded. The integral of

(I)

Fig. 3. Binary LRFEL corresponding to the following: (a) c =
0.5, (b) c = 1, (c) = 1.34, (d) c = 2. From (a) to (b) there is a loss of
30% in the diffraction efficiency, from (b) to (c) there is a loss of
20%, and from (c) to (d) is also a loss of 20%.
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Eq. (12) tends to unity, and the diffraction efficiency
takes the value et = c cy/cd. This can be rewritten
in terms of our parameters to obtain

1
Et = w wx y E 0,0= XYcc,. (15)

The value of E0,0 means that the (0, 0) focus appears
to concentrate only the light impinging on the trans-
mitting apparent area of the (0, 0) lens.

(iii) The whole range of values of f is included:
This corresponds to the evaluation of Eq. (12) for all
possible values of c and d. The integral of Eq. (12)
can be easily written as the product of two integrals.
These integrals can be evaluated by standard numeri-
cal techniques.5 In Fig. 2 the diffraction efficiency et
divided by (cy ) is represented for the particular yet
interesting case in which c = d; in this condition,
from Eqs. (13) and (5), ffopt = 1.34 (1/c). The
representation is given as a function of the focal
length normalized to the optimal focal length (opt)
and the parameter c, respectively. The intensity on
the axis is also represented in Fig. 2a. The diffrac-
tion efficiency increases with the encoded focal length
encoded, and it falls very fast for short focal length;
the maximum diffraction efficiency available is
Etma, = c,,cy. Note also that for the special case in
which c, = cy = 1, c = Wx is the number of orders
appearing. For c = 0.5, c = 1, c = 1.34 (optimum
focal length), and c = 2, et /ccy is equal to 0.9, 0.6, 0.4,
and 0.2, respectively. The lenses corresponding to
these cases for c. = c = 1 are represented in Fig. 3.
Diffraction efficiency drops 30% between Figs. 3(a)
and 3(b).

We can now study the focal length for which c = 0.5
or, equivalently, t = 9 0%Etm,, for the special case
cX =cyandLx=Ly. UsingEq.(13)andLx =NAx,we
can writef90% = 2NAX2cx/X. In Table 1 we calculate
f90% for some values of Ax: c equal to 1, 0.75, and
0.5; N = 256; X = 632.8 nm (He-Ne laser). We can
deduce that a focal length of 1 m with c, = 1 and
et = 90% is available for Ax < 35 [im. If c, takes a
smaller value, f9o% is shorter; if c. = 0.75, then t =

50%; is cx = 0.5, then Et = 22%. High values of cx can
be obtained with very-large-scale-integration tech-
niques, but in a pixelated SLM, cx 0.75 is the
maximum value available today.3 6

4. Diffraction Efficiency for a (k, I) Focus

The light-amplitude distribution for the (k, 1) focal
region is given in Eq. (3). Applying the same treat-
ment as in the preceding case, we can write a similar

Table 1. Dependence of fgo% on Ax and cX for N = 256 and A - 632.8 nm

fso% (m)a

Ax(plm) c = 1 c = 0.75 cx = 0.5

100 8.1 6.1 4.1
50 2.0 1.5 1
35 1.0 0.74 0.5
25 0.5 0.37 0.25
12 0.1 0.08 0.05

aProportional to N and cx.

expression for the diffraction efficiency:

C C,~l CYc /2 d/2
e ( 1 cdc J 

d -c/2 J d/2

x sinc2(gx - kcx,gy - cy)dgxdgy. (16)

In this case the sine function is shifted kcX in the x
direction and Icy in they direction. In a general case
the same shift will happen; we have the volume
integral of the shifted Fourier transform of the pixel
function multiplied by the pupil function. Let us
now study some particular cases similar to those in
Section 3.

(i) The lens is of short focal length: This implies
that c and d are large numbers. Then if it is verified
that kcx < c/2 and Icy < d/2, or equivalently, k <
W/2 and I < Wy/2, the maximum of the sine
function lies in the integration interval. These in-
equalities are equivalent to considering the orders
that lie inside the pupil. From Eq. (16) the inequali-
ties imply together with the short-focal-length condi-
tion that the value of the integral is near unity.
Then, to a first rough approximation, we can say that
all focal regions verifying these inequalities concen-
trate the same amount of energy with the diffraction
efficiency given by Eq. (15).

It is easy to see from Eq. (16) that the order k =
floor(W/2) K and I = floor(Wy/2) _ L [where
floor(x) represents the largest integer not greater
than x] is the least efficient verifying the inequalities
because the sinc function lies near the corner of the
integration interval. We can then calculate the dif-
fraction efficiency for this order and the neighboring
ones in order to obtain a lower limit for the diffraction
efficiency of an array. We take as a reference Et(O, 0),
which is studied in Section 3. For calculations we
take k = K - n and 1 = L - m, where n and m are
integers. Then we must evaluate

OK+ 1/2)cx rL+1/2)cy

I I sinC2[gx -(i
6t,rel(K - n, L - m) = K-12)c -L-1/2)cy L+

r(K+ 1/2)c. JL- 12y
JK1/2)cx, J-L 1/

2
)cyJ

- n)c., g, - (L - m)c,]dgdgy

(17)

sinc2(g,, gy)dgxdg,
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Making the changes

g. = g + (K - n)cx,

in the upper integral, we obtain

Et,re(K - n, L - m)
J(n + 1/2)Cx (m + 1/2)cy

(-2K+n-1/2)cx J(-2 L+m-1
(K+ 1/2)cX (L+ 1/2)cy

JK-1/2)cx J-L -1/ 2 )cy

sinc2(gx, gy)dgdgy

Table 3. Transition of Diffraction Efficiency §rei from Appearing to
Nonappearing Orders as a Function of cx for Several Values of

k and = 0

Etrel (%)

Order c = 1 c = 0.75 c = 0.5

I = 0,k =K- 0 87 82 73
= 0,k =K +1 11 18 27
= 0,k =K 2 3 5 6
= 0,k =K 3 2 2 4

sinc2(gx, gy)dgxdg,

(19)

Note that Etrel explicitly depends on K and L. But if
Kc >> 1 and Lcy >> 1 (a large array is being encoded),
this dependence disappears because the squared sine
function decays fast. For this particular case, trel

depends only on n and m because of its presence in
the upper limit of the upper integral, and Et(O, 0) is
given in Eq. (15).

In Table 2 we have the values of Et,rel for K = L, c, =
cy, k = 1, and n = m for K tending to infinite, and
several values of c., and n. We can see that only the
order (K, K) has a relative efficiency lower than 90%.
Thus for encoding of a short focal length the LRFEL
works as an excellent uniform array illuminator.

From Eq. (16), when kcX > c/2 or icy > d/2 (this
corresponds to noncodified orders k > W, /2 and I >
Wy/2) the center of the sinc function lies outside of
the integration interval (the main lobe contains 82%
of the volume of the total sinc), and the concentrated
energy in these orders is then reduced drastically.
Note that for the special case in which c and cy are
small, an important portion of the main lobe of the
sinc function may remain inside the integration
interval, as can be deduced from Eq. (19) (n, m < 0).
In this case the orders (k, 1) have a more gradual loss
of energy when the values of k and I increase. This
can be seen in Table 3. We performed calculations
for k = 0, 1 = N, N + 1, N + 2, N + 3, in the same
conditions as in Table 2. In this way we calculated
the upper limit for the diffraction efficiency of the
focal regions, verifying the inequalities for each condi-
tion.

(ii) A large focal length is encoded: In this case, c
and d take small values. This implies an integration
in the neighborhood of the coordinates' origin in Eq.

Table 2. Evolution of Diffraction Efficiency q,rel for the Higher Encoded
Orders (k, k)

Etrel (%)

Order c = 1 c, = 0.75 c = 0.5

= k = K- 0 79 68 54
l=k =K- 1 93 91 90

= k = K- 2 96 95 92
l=k=K-3 97 96 95

(16). The integral can then be
product of the value of the sinc
area of the integration interval:

approximated by the
at the origin and the

Et(k, ) = sinc2 (kc., Icy),

EkI = XYcxcy sinc2 (kc,, Icy). (20)

Note that for the specific case in which cx = cy = 1,
the sine function of Eq. (16) always take a zero at the
origin of coordinates for any (k, ) except k = = 0.
In this case, practically all the energy is then concen-
trated in this order.

5. Conclusions

We have worked with the specific case of a device
constituted by rectangular pixels and a rectangular
pupil. This case is the most usual for a pixelated
SLM, but this is a restriction that does not come from
our development. As has been noted, replacement of
the sine function by the Fourier transform of a
general pupil and the rect function by a general
function defining the pixel in Eq. (3) leads to a
completely analogous development. The only differ-
ence is that, in the general case, the resulting inte-
grals for the diffraction-efficiency expressions are
more difficult to evaluate.

Then, the diffraction efficiency of an LRFEL can be
rigorously calculated from the light-amplitude distri-
bution for every (k, ) focal region. The amplitude
distribution was obtained from a mathematical model
of the LRFEL by application of the Fresnel diffraction
approximation. The main results are as follows:

(i) If an LRFEL must be used as a single lens, a
long focal length must be encoded. In this condition
the maximum diffraction efficiency available, defined
as the ratio of the energy impinging at the focus and
the total energy going through the lens, is in general
different from unity because the pixels (for technical
reasons) are not as large as possible. Then other
orders always concentrate a finite amount of energy.

(ii) The diffraction efficiency is a function of only
two adimensional parameters depending on the char-
acteristics of the device and the focal length encoded.

(iii) The diffraction efficiency is highly dependent
on the focal length encoded. It always decreases as
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gy = g' (L - m)cy, (18)Y



the focal length decreases. For the optimum focal
length the diffraction efficiency is only 40% if cx = cy =
1. If not, it is lower.

(iv) If an LRFEL is used as an array illuminator (a
single LRFEL with a short focal length is encoded),
the diffraction efficiency of all appearing lenses is
approximately the same, except for higher orders,
which have a smaller efficiency. For the nonappear-
ing orders the concentrated energy is, in general, low.

This work was supported in part by Comision
Interministerial de Ciencia y Tecnologia projects
ROB91-0554 and TAP93-667-C01-01.
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