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Analytical and numerical approximations in Fresnel
diffraction

Procedures based on the geometry of the Cornu spiral

E . CARCOLE, S. BOSCH and J. CAMPOS

Universitat de Barcelona, Departament de Fisica Applicada
i Electronica, Diagonal 647, 08028 Barcelona, Spain

(Received 7 October 1992; revision received 6 January 1993)

Abstract. Procedures for the fast and accurate numerical computation of
Fresnel diffraction integrals are developed on the basis of geometrical properties
of the Cornu spiral . The methods proposed allow the highly oscillatory integrals
in Fresnel diffraction to be approximated by means of three simpler integrals
and permit the calculation of these final integrals using analytical formulae .

1 . Introduction
Fraunhofer and Fresnel diffraction are classical topics in wave optics . Most

practical problems may be satisfactorily treated within the well known Fraunhofer
approximation but, in many cases, the more general Fresnel treatment is necessary .
In many cases, the more general Fresnel treatment is necessary . In the calculation
of Fraunhofer diffraction patterns the fast Fourier transform algorithm may be
used, as the figures correspond to Fourier transforms of the diffracting object . For
Fresnel diffraction, the problem leads to the computation of a different integral for
each point of the pattern . These integrals may be difficult (time consuming) to
evaluate when the integrand is highly oscillatory within the integration zone .
Therefore, several numerical techniques have been used for computations [1],
together with approximate procedures requiring short calculation times [2, 3] .

Assuming that the conditions for the validity of Fresnel diffraction are fulfilled,
there are two important practical reasons for studying the diffraction of a rectangle
as a tool to solve two-dimension problems . First, the two-dimensional integration
problem may be reduced (by decomposition of the function defining the aperture
into many rectangles) to many simple rectangular cases. Second, the interesting
case of pixelated spatial light modulators [4], giving apertures of variable complex
transmittance, may easily be dealt with by treating each pixel as a rectangle . For this
important practical case, it is of primary importance to use fast computation
procedures, as a diffraction problem has to be solved for each one of the pixels .

The aim of the present paper is to develop simple geometrical procedures for the
computation of Fresnel-type integrals in the near field . The resulting accuracy is
about 1 % (or better) relative error in the computation of complex amplitudes and
the calculation is 30 times faster than numerical integration . This accuracy is
similar to the Fresnel approximation itself in the near field [2] . All the computation
procedures apply to diffraction apertures and to obstructions by simple application
of Babinet's principle .
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2. Diffraction geometry. The Cornu spiral
In our development, notations follow Klein and Furtak [5] . The general

diffraction set-up is sketched in figure 1 . The complex amplitude at a point P'(x', y')
of the final plane, when the diffraction aperture is a rectangle is given by

i

	

fix, fly,

E'(P')=-E;,a(P)

	

exp [-i(x2+y2)] dx dy,

	

(1)
nx,

	

ny,

where

xl -x

	

x2-x
nX, = F ,

	

nX2= F

Yi-.~'

	

Y2-Y
ny, = F '

	

?1Y2 = F '

F-CAD'(D+D')11/2

	

(2)nD

	

'

and Eha(P') is the field without any aperture . Note that the exponential and the
definition ofF have been slightly modified from the definitions given in [5] in order
to obtain simpler final integrals. This implies a parametrization in n that is different
from the more customary form, and that includes a n/2 factor in the exponential .

Following our definitions, it is important to note that An = n2 - n 1 (both for x
and y) is constant for any calculation point (x', y') on a fixed plane .

Thus, calculating complex amplitudes in Fresnel diffraction is equivalent to
computing integrals of the type

f
('n

Jo

known as the complex Fresnel integrals . These integrals are

exp (-ix 2 ) dx, (3)

not analytically
resolvable and their numerical computation becomes time consuming because of

0
I--

Figure 1. Geometrical configuration .
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(ii) the angle between the real axis and the tangent to the curve at a point
defined by q is given by

9= - t12 ,

	

(5)

(iii) the curvature radius at a point defined by q is

1
P = 2q ,

	

( 6)

(iv) the value of the integral for the full q range is

1 .00
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0.50 -

-0.75-
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the highly oscillatory behaviour of the integrand . Plotting the real and imaginary
parts of (3) on the complex plane as a function of the parameter q, the well known
Cornu spiral is obtained (see figure 2) .

A striking feature of this figure is the simple dependence of relevant geometrical
properties on the value q. For example [6, 7] :

(i) the length s along the curve (from the origin) is given by

s=I iI,

	

(4)

0.25-

0.00
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0
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9
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C

Figure 2 . Plot of the real (C) and imaginary (S) parts of the Fresnel integrals as a function
of the parameter q (Cornu spiral) . Several values of q are indicated on the curve .
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(' ao

	

2

	

1 (' ao

	

1 C~)
,~Jo exp (ix ) dx=2 _~ exp (-ix

2
) dx= 2 2

	

(1 -i) .

	

(7)

We will see that these four properties have an important role in the development of
approximate mathematical expressions for the calculation of Fresnel integrals .

3. Geometrically based approximations for the Cornu spiral
Focusing our attention on property (iii) above, it is apparent that the curvature

radius decreases rapidly as I increases . Moreover, this property also implies that the
variation of the curvature radius will depend on 1 /11 2 , i .e weakly dependent on t1, as
q increases . Thus, for large q and a limited range of variation in q, the curvature
radius will be almost constant . This is the key point in the forthcoming develop-
ments and becomes our central assumption .

In order to use approximations derived from the previous properties, it is
necessary to write the integral (3) in the form

J n exp (-ix2) dx=J exp (-ix2 ) dx +

	

exp (-ix2 ) dx=Io +I~,

	

(8)
0

	

0

(see figure 3), since I~ will adequately be approximated by taking into account the
factors just discussed .

C
Figure 3 . Illustrating Ig as a complex sum of to and I, .

D
ow

nl
oa

de
d 

by
 [

 ]
 a

t 1
0:

48
 2

0 
N

ov
em

be
r 

20
11

 



Approximations in Fresnel diffraction

Let us begin by defining the integrals 1 1 , 12, 13 and 14 , whose graphical
interpretation is illustrated in figure 4, an enlarged portion of the most coiled part of
figure 3 .

(,2+n )112

I 1
=J

	

exp (-ix2 ) dx,
n

(112t 21,)1/2

13 =

	

exp (-ix 2) dx,

Note that, after property (ii) of Section 2, an increment of is in the square of the
integration limit corresponds to the opposite side of the spiral (slope of opposite
sign) .

A first approximation may be proposed :

1I~ ; I.=-2 h .

	

(10)

It is easy to see that this estimation has a lower modulus than the exact value .
Careful analysis of figure 4 suggests an initial refinement to the previous

expression

1
I1 +2 I2) .

	

(11)

Ir

I

	

I
I

	

I

	

I
I

	

13

I

	

I14 I

(q'+2,,)1/2

I2 =

	

exp (-ix 2 ) dx,
(n'+n ) 112

(v +3x)1z
I4 =

J

	

exp (-ix 2 ) dx.

	

(9)
(v'+2n) 1 i 2

Figure 4. Sketch of the definition of the quantities I1 , 12, 13 and I4 .
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It is easy to check that this is in fact a better approximation than I a; this is due to
using higher n values, a condition for the validity of our key point just mentioned in
Section 2 .

Actually, Ib gives values higher in modulus than the correct ones . A more
accurate approximation is obtained by taking I, as :

1

	

1
00

	

1+,2+2 14 =-C1
3
+2 141.

	

(12)

This is indeed a better estimation, as it uses even higher n values ; in fact I, also gives
a lower estimate, but better than la .

Note that we are only using the three integrals Il , 12 , 14 to develop the
approximations . The formulae presented correspond to taking the first terms of a
more general development :

j= N- 2

	

[q'+(l+1)a]'/2h-

	

exp (-ix2 ) dx
j= 0

	

(g 2 +n)1 / 2
1

	

(q'+Nn) 1 /2
+ 2

	

exp (-ix2 ) dx, N= 2, 3 . . .
[q'+(N-1)n]1/2

[q2 +(N- 1)n.] 1 /2
exp (-ix2) dx

q

1

	

(q'+Nn) 1/ 2
+-

	

exp (-ix2 ) dx, N=1, 2, 3 . . . .

	

(13)
2 [q'+(N-1)n]1/2

Our interest is not to use more than three intervals for integration (provided the
final precision is sufficient), so we will basically construct new approximations from
Ib and I, only .

The graphical representations of the accuracy of the preceding approximations
(and also of those soon to be defined) are presented in figures 5 (a) and (b). Figure
5 (a) is a plot of the relative error in the modulus originated by the different
approximations Ia , Ib , I, as a function of the tl value. The sign near the identification
of the curves indicates the sign of the relative error, i .e. values greater than or less
than exact values . Figure 5 (b) shows the absolute error in the calculation of the
phase by the different definitions I a , Ib , . . . . All the integrals were calculated using
the Romberg method [8], to a fractional accuracy of 10 -6 , with five points used for
extrapolation . For I co to be computed without approximation, equality (8) was
taken into account to avoid the infinitely oscillatory behaviour of the integrand,
which would make the convergence of numerical integration more difficult .

Observing the characteristics of curves (b) and (c) in figure 5, it is evident that
the following definition leads to a better approximation

1

	

1

	

3

	

1
11^-Id -2 Ib + 2 Ic=- I1 + 4 12 + 4 74 .

The corresponding accuracies are plotted in the same figures . Clearly, Id represents
a good fitting, mainly regarding its asymptotic behaviour . Furthermore, this
suggests new definitions as
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(b)
77

Figure 5 . (a) Relative error in the modulus of I ;, when approximations I	Ip are used
and I,, . . . ,14 are numerically computed . (b) Absolute error in the phase of I, when
approximations I	If are used and 11 , . . ., I, are numerically computed .
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1

	

7

	

3IQ --
2
(I~+Id)=- I1+812+814

whose behaviour is good for small n values, but worse for greater ones . From the
analysis of the curves (d) and (e), their opposite sign and the fact that there is a
crossing point lead to a final definition

1

	

(

	

13

	

5
Ins^-If-2(Id+I¢)=- I1 +

16 12+1614

	

(1 6 )

As was our purpose, for all our definitions we use only three different Fresnel
type integrals, as in (9), which always implies simple numerical integration .

In conclusion, examination of figure 5 suggests combining the use of
If(0< IrlI <3. 5) and Id(trlI >3 . 5), which results in a simple computation procedure
whose relative error for the modulus is always better than 0 .5% and similar for the
phase. Indeed, when 0 < I n I < 3 .5 direct evaluation of integrals is better (faster) than
using the proposed decompositions, as they do not have a highly oscillatory
integrand. In conclusion, the proposed method for computing I00 is :

(a) for n < 3 . 5 numerical integration,
(b) for n > 3 .5 use Id .

We designate this the geometrically based numerical approximation (GNA) .
More accurate results can be obtained by taking a higher N value in (13) . As an

even N value implies obtaining results higher than the correct ones and odd N
values the opposite, a simple mean of them will always be a better estimation .

4. Simple geometrically-based analytical expressions for the integrals
of interval 7t in the Cornu spiral
Our aim is to find simple but precise analytical expressions for integrals of the

type
f(n 2 +n) i f2

In (n)-
J

	

exp(-ix2)dx-Mexp(iip)

	

(17)
n

with a view to avoiding numerical integrations if possible .
Let us begin with the modulus M . Inspecting figure 6, our basic assumption

about the curvature radius of the Cornu spiral (after properties (iii) and (i) of
Section 2), allows us to approximate the shape of the curve between I and (n2 +it) 1/2
to a circumferance of radius r, so it is easy to establish the equality

Although it may seem a simple approximation, mainly for small n values,
figure 7 (a) shows how accurately it describes the exact values of the integral .

21 = 21tr =_ itM . (18)

where l is the length along the spiral ; therefore

l=(n 2 +It)112- n, (19)
and, finally, from equations (18) and (19),

M 2[(n 2 +7tW1/2 (20)
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The maximum relative error is 1 .4% for q=0 and precision increases very rapidly
with q .

The problem may be envisaged in a similar fashion for the phase cp of integral
(17). For a true semi-circumference, the angle a in figure 6 would be exactly
a=1/M=1/2r=it/2. Our interest is to find a good approximation for a, using the
previous approximation for M and a new expression for 1 . We see in figure 6 that

Similarly, along the integration interval we know that the curvature radius varies
from 1/n to 1/(n2+1()1/2 . So, it becomes natural to take an intermediate value for r
by using an adjusting parameter k(0 < k < 1, to be computed). Thus a new

Other approximate formulae could be derived, for our simple expression leads to
very accurate results even at low q values .

Equations (20) and (24) determine the quantities defined in (17) . Figure 7 (b)
shows the absolute error in computations when the phase is estimated using the last

Figure 6 . Illustrating the parameters used for computing M and (p approximately .

expression for 1 may be written as

1
(23)

2(q2 +kit) 112

Finally cp is approximated as :

n 2

	

1
W -q2-

(2
(24)

(q2+kn)1j2[(
q2 +rz)1"2-,

iF

1
(P~

- q2 (21)
2r

From our previous modulus calculation, we may take r as

(22)r=1=1 [(q2+n)1n)_,l]
R 7t
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Figure 7 . (a) Relative error in the modulus M when approximation (20) is used .
(b) Absolute error in the phase tp when approximation (24) with k=0 . 68 is used .
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Figure 8 . (a) Relative error in the modulus of I, when approximations I„ . . . , If are used
and Il , . . . , 14 are are analytically estimated . (b) Absolute error in the phase of 1".
when approximations I	If are used and I,, . . ., 14 are analytically estimated .
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(c) X

Figure 9 . (a) Modulus of the field diffracted by a slit (width = 0, Afl=4) computed by
exact Romberg integration . X is a normalized distance in the diffraction plane .
X= ± 1 correspond to the edge of the geometrical shadow . (b) Zone of maximum
error for the modulus in (a) when using exact Romberg integration (continuous line),
the GNA procedure (dots close to continuous line), the GAA method (dots further
from the line, less accurate) . (c) As in (b), but for the phase.

expression for k=0 .68. This is the best constant k we have found by testing
equation (24) for possible values of k .

In conclusion, when these simple analytical expressions are used to evaluate the
previous integrals I„ I6 , . . ., replacing the numerical techniques (as the Romberg
method), the errors induced in modulus and phase are quite small, as represented in
figure 8 (a) and (b) .

A special case should be treated with caution : when q lies in the approximate
interval 0-3 .5 . This is because absolute errors now become more significant than
relative ones, as in (25) and (26) we use two approximate values to estimate their
small difference . Indeed, for this particular case our approximations may be
avoided, since this kind of integral is rapidly computed by exact numerical
integration, as the integrand does not oscillate rapidly here .

Thus, finally, we propose a geometrically based analytical approximation
(GAA) for computing I" as :
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(a) for n < 3 .5 numerical integration,
(b) for n > 3 .5 use Id computed using (17), (20) and (24) .

5 . Application to the computation of diffraction integrals
We have shown how to simplify the computation of IOID by means of simpler

integrals such as Il , 12 and 14 .
Moreover, fairly accurate values may be obtained by simple approximations of

these three integrals, using elementary analytical expressions . The remaining
problem is to indicate how and when these procedures may be useful for general
diffraction integrals where the points limiting the integration interval are
unrestricted .

We can distinguish between two cases, depending on the signs of the parameters
which represent the initial and final integration points. Equivalently, the cases
depend on the quadrants of the position of the points . For a diffraction aperture, the
possibilities are .

(a) The calculation point lies in the geometrical shadow of the aperture : the
limits for the integrals have the same sign . Depending on this sign, the
suitable decompositions are

f n2 exp (-ix2 ) dx=

	

exp (-ix2) dx+

r/2
exp (-ix 2 ) dx, (25)

q1

	

ql

	

tao

leading to two integrals of the previous type .
(b) The calculation point lies outside the geometrical shadow : the limits of the

integrals have opposite sign and the appropriate decomposition is
n2

	

a
exp (-ix') dx=

	

exp (-ix2)dx+

	

exp (-ix2) dx
-cc

n2+ f exp (-ix2)dx,

	

(26)

and the first and last integrals may be computed as before .

As indicated earlier, when q1 and 172 lie in the approximate interval -3 . 5 to 3 . 5,
it is better to carry out direct numerical integrations .

It is important to note that, taking this into account, the final accuracy is always
better than 1 % and the computation time is always optimum, since exact integra-
tions are used when they are faster and more accurate than approximations . Results
are even better when observation distances decrease, i .e. large n (see figures 6
and 8) .

6 . A particular example
In order to show the effectiveness of our procedures for computing Fresnel

diffraction distributions, we have developed a particular example . The geometrical
configuration corresponds to a plane illuminated slit of width 2 . Figure 9 (a) is a plot
of the modulus of the diffracted field (for An= 4) computed by exact Romberg
integration . Figure 9 (b) is an enlarged portion of (a) showing the zone of maximum
error when using (i) numerical (Romberg) integration, (ii) the GNA and (iii) the
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Figure 10 . Computation time versus Ail for a complete one-dimensional Fresnel distribu-
tion (modulus and phase) . (0) exact Romberg integration (to a fractional accuracy of
10-6 ), (*) using the GNA procedure, (x) using the GAA method (no numerical
integration) .

GAA. Figure 9 (c) shows the results for the phase . Note that the less accurate zone
corresponds to the projection of the edge of the slip, and the least accurate method
is GAA. Of course, precision will depend on An (see Section 5) .

Figure 10 illustrates the computation times involved when using the three
procedures explained, for several values of An. The time taken by the GAA is about
3s except in the interval Ar1 < 2, in which the time is about 5 s. Note that in this case
some points are calculated by the exact numerical integration method . For the
GNA, the time is about 35s and it decreases for Atl < 3 . 5 . Finally, when exact
numerical Romberg integration is used the calculation time increases rapidly with
An. So, the GAA is the fastest (the time consumed is constant independently of An)
and the errors are less than 1% .

7 . Conclusions
We have developed procedures for the fast and accurate numerical computation

of Fresnel diffraction integrals . They are based on geometrical properties inherent
to the Cornu spiral, i.e. the length along the curve, the curvature radius and slope of
the curve as functions of a single parameter t1 . Particularly, a central point in our
developments is to take a constant curvature radius for small intervals, due to its
slow variation as t1 increases .
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Such simple considerations give excellent results in the calculation of modulus
and phase of the Fresnel integrals, even when one of the limits of integration falls in
the zone of small n values of the spiral . Our methods allow the highly oscillatory
integrals in Fresnel diffraction to be approximated by means of three simpler
integrals, faster to evaluate . Moreover, geometrically based analytical expressions
for these final integrals are also given . This permits a very rapid computation with a
moderate loss in accuracy .
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